University of Jordan
School of Engineering and Technology
Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Experiment 1 - MATLAB Fundamentals |

Author: Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 1 - MATLAB FUNAAMENTAIS |.....coiiieiiiiiiiiiiiie ettt e e e e e e e e e e ennnsneeeeeas 1
WAL IS IMATLAB? ..tttk ettt e ookt e e ekt e £ ok et e e e am bt e e e anbb et e e e anbe e e e e anneeeeeannes 1
AN I AN 3 0T] 1T o 2
MATLAB as a NUMEICAl CaICUIALONuuuuiiiiiiiiiiiiiiiiiii e 3
Order of Precedence of ArithmetiC OPEratiONS.coiiicuiiiiiiee ennees 4
MATLAB Variables and the ASSIGNMENT OPEIALONuuuuuururiiiiiiiiiiiiii e 5

Special Variables and CONSTANTS.........uuuuuuiiiiiiiiii e aaaaaaannaananaanaans 6
Working with ComPpPIEeX NUMDEISo e e e e e e e e e e e e e e e e snsnreenneeeeeeann 7

Complex NUMBDET FUNCLIONSuuiiiiieees ittt e e e e e e e e e e s s e e e e e e e e snnnnsaeneeeeeeeennnnnees 10
MATLAB Built-in Mathematical FUNCLIONSuuuiiiiiiiiiiiiii s 11
NUMETIC DISPIAY FOIMMIALS. ... eeiiiiiie e ettt e e e e e e e e e e e e e st eeeeeeeessnsaaaneeeeeeeeannnsenneeeas 14
Discrete MathematiCS iN MATLAB ..o e e anee e 16

SIS N IMATLAB . ..ttt ettt e ettt e e ettt e e e an et e e e anst e e e e enbeeeeeanseeeeeanneeeeeaanseeeeeanneeeeeannes 16

DISCrete MANEIMALICScciiueiiiei ittt et e et e e e et e e e e bbe e e e e anbb e e e e anaeee e 17
Performance TimiNg iN IMATLABccoi ittt e e e e e e e e e e e e e e e e s nsra e e eeeeeeesnsseaneees 19
Number Rounding and Rational Fraction APProXimationcccceeuiiiiiiiieiee e 19
Commands for Managing the WOrk SESSIONc.uviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee ettt eeeaeeeees 21
MATLAB Help and DOCUMENTALIONuuiiiiiieeee ittt e e e e et e e e e e e e e e e e e e e e snsaeeeeeeeeeeennsnnnneees 24

What is MATLAB?

MathWorks has developed and maintained MATLAB since the 1970s. MATLAB is a programming
language and software environment that manages data interactively.

MATLAB is historically oriented towards:

Matrix operations and linear algebra.

Numerical analysis.

Fast and easy data plotting

Interface with other programming languages

Symbolic processing (e.g. differentiation and integration with symbols as you would solve
problems in Calculus).

Page 1 of 27

MATLAB has a wide array of toolboxes for image processing, signal processing, statistics, machine
learning, control and automotive systems among dozen others (may require additional paid licenses,
so we might not have all of them in the lab).

MATLAB provides through an additional integrated product called Simulink graphical model-based
design and simulation for numerous engineering, scientific, and economic systems (may require
additional paid licenses, so we might not have all of them in the lab).

C++ and Java are compiled languages where all the code is first compiled, then an executable is
generated and run afterwards. In contrast, MATLAB is an interpreted language. There is no code
compilation. MATLAB executes commands in order during run-time. That is; it understands
(interprets) the commands one-by-one as they appear in the code/script.

MATLAB Environment

The main screen of MATLAB has five main windows:

4\ MATLAB R2015a - academic use o @ =
HOME m.’u_:‘_-_:_:@I - Yocumentat ;E

==

- L New Varabie Analyze Code g f {Q) Preterences 4 Communi

Lo Qd W Oemre 2 (e ™ o & g2 2 & Y
OpenVarisdle v (> Runand Ty Set Path > Request Su
New New Open | [Compare Mot Swve & o Sk Layout Hep oS
Wl

Script v £ Dota Viorkspace |- ClearWorkspace v |) Ciear Commands v Library v Pmlllv v *mmv

oE VARIABLE CO0E BIMUCINK ENVARONUENT RESOURCES
e AT RS » C: * Users * John * Documents * MATLAB v |2
Current Folder Ol Command Window Gl Workspace

Name New to MATLAB? See resources for Getting Started, *[Name Value

Academic License
ko> |]
] 3

Select a file to view details

« Ready

1.The Ribbon tab where you have access to the IDE operations: opening new or existing files,
save files, import data from files (e.g. Excel or CSV), set working path, run your code, and
access MATLAB plots and numerous toolboxes.

2.Current working directory where you save all your MATLAB scripts, functions, plots ... etc.
MATLAB commands expect to work with files in the current working directory (More on this
later). You will learn how to setup the working path later.

3.Command Line where you write and execute your MATLAB commands. You will see the
output of your commands in the same window.

4.Workspace where you all your session variables are saved and accessed.

5.Help and Documentation where you can search for any topic or command.

Page 2 of 27

MATLAB as a Numerical Calculator

You can use MATLAB to quickly find the output of many mathematical operations. For example, try
to copy/paste these codes one by one in the command window, then press Enter to see the output
after each one.

10 + 10
ans = 20
65 - 35
ans = 30
85 * 5

ans = 425

2 N 10

ans = 1024

8/ 4

1}
N

ans

8\ 4

ans 0.5000

Note that in the last operation, we used the backslash instead of the division operator. The
backslash acts as a division operator but in the reverse order. So, 8 \ 4 is equivalent to 4 / 8 = 0.5.
This is called backward division while the normal division case is called forward division.

Notice that after each operation that you execute, your answer is stored in a special variable called
ans (that is short for answer). There is only one ans variable that is constantly changing as it always
stores the result of the most recent operation. Each subsequent operation essentially overrides the
previous answer with its own result and stores it in ans. You can see the ans variable to your right in
the Workspace window. The workspace window displays all variables used in your session. Later
on, when you work with large data (e.g. arrays), you can double-click on the variable and see its
content in an Excel-like sheet.

MATLAB saves all your previous keystrokes. While in the command window, press the Up-Arrow on
your keyboard. You will see all your previous commands. You can also access all previous
commands by typing commandhistory. From there, you can select any command or group of
commands by pressing (SHIFT + LEFT Mouse button) on each of them. You can revaluate these
commands by (Right-Click on your selection --> Evaluate Selection). You can edit the
commands too by using Backspace and Delete keys and Left and Right arrow keys.

Page 3 of 27

Order of Precedence of Arithmetic Operations

One easy way to remember the rules of precedence of arithmetic operations is by remembering the
word: PEMDAS. Each letter stands for the first letter of the operations in their order of precedence.

1.Parenthesis
2.Exponentiation

3. Multiplication and Division
4. Addition and Subtraction

When the precedence level is equal, evaluation is performed from LEFT to RIGHT.

Calculate the output of these examples by hand. Compare your answer by executing these
examples in the command window. Copy/paste these expressions one by one in the command
window, then press Enter to see the output after each one.

8 +3 *5

ans = 23

8 + (3 * 5)

ans = 23

(8 +3) *5

ans = 55

4 ~2 -12 -8/ 2 *2

ans = -4

I
>

N}
1

12 - 8 / (2 * 2)

472 -12 -8\ (2 * 2)

w

ans = 3.5000

3*4"~2+5

ans = 53

(3*4) ~2+5

ans = 149

27 7~ (1 /3) + 32 ~ (0.2)

ans = 5

Page 4 of 27

27~ (1 /3) +32"0.2
ans = 5
27 "1/ 3 + 32 ~ 0.2
ans = 11
MATLAB Variables and the Assignment Operator

Unlike other programming languages like C++ or Java, you DON'T need to declare a MATLAB
variable and define a type prior to its use. You can directly assign values to variables in MATLAB.

By default, and unless otherwise defined, ALL numeric values are treated as double-precision
floating-point values in MATLAB.

Variables can directly store text, tables, structures, vectors and arrays (matrices) among other data
types (more on this later).

As explained before, if no variable is used to assign the result to it, the default variable where the
answer is stored is ans.

To define a new variable, simply write the variable name followed by the assignment operator (=)
and the value to be stored in the variable. ONLY ONE variable can be written to the left hand side of
the assignment operator. Expressions such as x + 5 = 20 are NOT ALLOWED.

Copy/paste these examples one by one in the command window, then press Enter to see the
output after each one.

5 * 20
ans = 100

c = ans * 10

c = 1000

d =8

d=28

d = 'numerical’
d = 'numerical’

Page 5 of 27

Notice that we did not define any datatypes for our variables in the above examples (There is no
int, or float, or double, or string).

Note that the output of 5 * 20 is implicitly stored in the ans variable (since the output was not
assigned (stored) into any other variable). Also note that we can use the ans variable in further
computations (c = ans * 10) even though it is not a recommended practice because ans always
changes value.

Interestingly, in the above example, the variable d initially holds the numerical value 8. Then, we

override it to store the string ‘'numerical’. This is permissible since in MATLAB, if the variable already
exists, MATLAB changes its contents and, if necessary, allocates new storage.

Special Variables and Constants

MATLAB has a set of special variables (case-sensitive):

e ans: Temporary variable containing the most recent answer.

e i and j: the imaginary unit v—1 .

e inf or Inf: the infinity co.

e NaN: stands for Not an Number; indicates an undefined numerical result.

e pi: the math number » =3.141592...

e eps: by default, this variable represents the machine's accuracy in double precision. It
represents the distance from 1.0 to the next largest double-precision number. On a typical
machine running a modern Intel processor ¢ = 2.220446049250313e-16

¢ realmax: Largest positive floating-point number
¢ realmin: Smallest normalized floating-point number

Copy/paste these examples one by one in the command window, then press Enter to see the
output after each one:

d=1/20
d = Inf
e=0/0
e = NaN

While the above operations will result in an error on a hand-held calculator or in some other
programming languages, MATLAB can handle results of infinity or undefined values.

Remember that in other programming languages such as C++ and Java that the range of signed
integers of type int is -2147483648 to +2147483647. Now, try storing this number in MATLAB:

g = 4567892345638

g = 4.5679%e+12

Surprisingly, the variable g was indeed declared, reserved in memory, and stored the number
4567892345638. But how could it store an integer value that exceeds the possible range?

Page 6 of 27

Use the class command to determine the data type of the variable g

class(g)

ans = 'double’

Remember that MATLAB stores all numeric values by default as double-precision floating point
numbers. This enables MATLAB to handle much larger range of integers and floating-point numbers.
This becomes clear knowing that integers are a subset of floating-point numbers.

The largest/smallest integer number MATLAB can store precisely and exactly in the default
double floating-point type variable without any errors is 273 = £9, 007, 199, 254, 740, 992. All other
integers stored in MATLAB above or below this number are not exact integers. You should review

the IEEE 754 standard which you have studied in the Computer Organization and Design course to
know why.

Working with Complex Numbers

We have already introduced that the letters i and j are predefined variables in MATLAB to represent
the imaginary number v/ —1. Note that you don't need a multiplication sign between the number and

the imaginary unit i or j. Copy/paste these examples one-by-one in the command window, then
press Enter to see the output after each one.

a =1 +1j

a = 1.0000 + 1.0000i
b=54+6i

b = 5.0000 + 6.0000i1
c=a+b

C = 6.0000 + 7.0000i

When you are going to use i or j with any constant to represent a complex number, you must write
the imaginary value without a multiplication sign. Even if the value is 1, it is recommended to
explicitly precede it with 1, so it looks like 1i or 1j.

The above recommendation is important. Sometimes, you might by mistake override the variables i
and j by any other value and MATLAB allows that without issues!

i=2
i=2
j=3
j=3

Page 7 of 27

To restore the values of i and j to the default v —1, simply delete the variables by using the clear
command and MATLAB will revert to the original meaning.

clear i j

As long as you don't override the values of i and j, these numbers are all complex.

clear i j

al =1+ i % COMPLEX
al = 1.0000 + 1.0000i

bl =1+ 1i % COMPLEX
bl = 1.0000 + 1.0000i

cl=1+1*1 % COMPLEX

cl 1.0000 + 1.0000i

dli =1+ 21 % COMPLEX

dl = 1.0000 + 2.00001

el =1+ 2*i % COMPLEX
el = 1.0000 + 2.0000i1
fl =5 + 6] % COMPLEX
fl = 5.0000 + 6.00001
gl = 5 + 6*j % COMPLEX
gl = 5.0000 + 6.00001

However, once you override the default imaginary numbers with other values, the same expressions
will be interpreted differently. Consider:

i=1 % Overriding i and j
i=1

j=3

j=3

a2 =1+ 1 % NOT COMPLEX

a2 = 2

Page 8 of 27

b2 =1 + 1i

b2 .0000 + 1.00001

]
[y

c2=1+1*1i

c2 =2
d2 =1 + 2i
d2 = 1.0000 + 2.0000i1

e2 =1+ 2 * i

e2 =3

f2 =5+ 6J

f2 = 5.0000 + 6.0000i
g2 = 5 + 6%*%j

g2 = 23

Notice that whenever you place a multiplication sign between the imaginary variable i or j and its
coefficient, MATLAB no longer interpret i and j as v/—1. Instead, they are considered as real-
numbered variables and MATLAB uses the new overridden values. Also, if the imaginary coefficient
is 1 and you forget to explicitly write the imaginary part as 1i or 1j, then in this case, the overridden
value of i or j will be used.

The order of precedence will yield different values if you are not too careful in writing your
expressions. Consider:

clear i j
a = 9/2*i

a = 0.0000 + 4.5000i
b =9/2i
b = ©.0000 - 4.5000i

MATLAB treats the first expression as having three terms and will evaluate the expression according
to the rules of precedence. Since division and multiplication have equal precedence, the expression
will have the same result as:

a = (9/2)*i
a = 0.0000 + 4.5000i1

Yet, MATLAB treats the second expression as having two terms only (due to the absence of the
multiplication sign), so the second expression is basically the same as:

Page 9 of 27

b=9/(2i) ¥ b = -4.51
b = ©.0000 - 4.5000i

Perhaps a direct way to create MATLAB variable is by using MATLAB complex built-in function. If we
represent a complex number as a + bi, then we can create a complex number by writing complex(a,

b)
complex(5, 10) % This is equivalent to 5 + 10i
ans = 5.0000 + 10.0000i

Complex Number Functions

While working with complex numbers, there are five main functions that we might frequently need.
Splitting the imaginary and real parts. Determining the complex conjugate, and most importantly
computing the magnitude and angle of the complex vector. Remember that a complex number a + bi
can be projected on the complex plane as:

Im

A

b e —_ -

a+bi

» Re

MATLAB has all these operations as built-in functions. The following example illustrates how to use
them:

a = 5+3j
a = 5.0000 + 3.0000i
b = complex(7, -8)

b = 7.0000 - 8.0000i1

abs(a) % Magnitude of a complex number

ans = 5.8310

Page 10 of 27

abs(b)

ans = 10.6301

angle(a) % Phase angle of complex number (in RADIANS)
ans = 0.5404

angle(b)

ans = -0.8520

conj(a) % Complex Conjugate

ans = 5.0000 - 3.0000i

conj(b)

ans = 7.0000 + 8.0000i1

real(a) % Extract real part of complex number

ans = 5

real(b)

ans = 7

imag(a) % Extract imaginary part of complex number
ans = 3

imag(b)

ans = -8

MATLAB Built-in Mathematical Functions

MATLAB supports lots of common mathematical functions. We provide a listing of the major ones
which you already know from algebra and calculus courses.

Please note that the TRIGONOMETRIC FUNCTIONS IN MATLAB USE RADIAN MEASURE by
default.

Page 11 of 27

Mathematical Functions

Exponential and Logarithmic Functions

exp (x) Exponential; e*.

log(x) Natural logarithm; In(x).

logl0(x) Common (base 10) logarithm; log(x)= loga(x).
sqrt (x) Square root; /x.

Trigonometric Functions

acos (x) [nverse cosine: arcos X = cos (x).
acot (x) Inverse cotangent; arccot X = cot —(x).
acsc(x) [nverse cosecant: arcs X = cs¢ (x).
asec (x) Inverse secant; arcsec x = sec (X).
asin (x) [nverse sine: arcsin x = sin ' (x).
atan(x) [nverse tangent; arctan X = tan (%)

Four-gquadrant inverse tangent.

Cosine; cos(x).
cot (x) Cotangent; cot(x).
csc(x) Cosecant; csc(x).
sec (x) Secant; sec(x).
sin (x) Sine: sin(x).
tan (x) Tangent; tan(x).

Hyperbolic Functions

acosh (x) Inverse hyperbolic cosine: cosh ' (x).
acoth (x) Inverse hyperbolic cotangent; coth ~' (x).
acsch (x) Inverse hyperbolic cosecant; csch ' (x).
asech (x) Inverse hyperbolic secant; sech ~' (x).
asinh (x) Inverse hyperbolic sine: sinh ' (x).
atanh (x) Inverse hyperbolic tangent; tanh ~' (x).
cosh (x) Hyperbolic cosine; cosh(x).

coth (x) Hyperbolic cotangent; cosh(x)/sinh(x).
csch (x) Hyperbolic cosecant; 1/sinh(x).

sech (x) Hyperbolic secant; 1/cosh(x).

sinh (x) Hyperbolic sine; sinh(x).

tanh (x) Hyperbolic tangent: sinh(x)/cosh(x).

Page 12 of 27

Let’s try some of these functions:
a = sqrt(9)
a=3
b = sqrt(-16)
b = .0000 + 4.0000i
Since 102 = 100, then log,,(100) =2
c = logle(1e0)
c =2
and ln(e’) =3
d = log(exp(3))
d=3

But what if we need to find the natural logarithm for a base different than 10 or ¢? In this case, we
need to use mathematical rules:

log,(a) = logyla)
’ logo(b)
. _]Og]g(())
so if you need to compute log;(6) = 7 3) which can be easily computed in MATLAB as:
LOZ 10\ 2

loglo(6) / loglo(3)

ans = 1.6309

As we know, sin(30°) = 0.5, attempting this directly in MATLAB will yield the wrong result:
sin(39)
ans = -0.9880

Remember, trigonometric functions in MATLAB use RADIAN as function input by default, so you

must convert the value from decimal to RADIAN by multiplying it by %

sin(30*pi/180)

ans = 0.5000

Page 13 of 27

Similarly, we know that cos~'(0.5) = 60°, attempting this directly in MATLAB will yield the result in
radian:

acos(0.5)

ans = 1.0472
so don't forget to correct the output - if necessary - by converting it to decimal by multiplying it by
180,
pat
acos(0.5)*180/pi

ans = 60.0000

If you wish to have the square of a trigonometric function, say cos*(x), then the correct way to do it
is to square the whole function in MATLAB, as in (cos(x))?

Finally, we already learnt that using the abs()function with complex numbers returns the magnitude
of the complex numbers. You can use the abs() function with real numbers as well, in this case, it
means the absolute value |x/, try:

abs(-5)
ans = 5

Numeric Display Formats

MATLAB's format command gives us control on HOW TO DISPLAY the output numbers. They DO
NOT change the actual accuracy of the number stored in memory. Just what you see on the screen.
Some formatting commands affect the look and feel of the workspace (e.g. line spacing). The
following table lists all available output formatting commands:

Numeric Display Formats

format short Four decimal digits (default).

format long 16 decimal digits.

format short e | Five digits plus exponent.

format long e | 16 digits plus exponents.

format bank Two decimal digits.

format + Positive, negative, or zero.

format rat Rational approximation.

format compact | Suppresses some line feeds.
format loose Resets to less compact display mode.

The format compact and loose functions control the line spacing in the command window.

Page 14 of 27

Let's try few of them with the number z

format short
pi
ans = 3.1416
format long
pi

ans =
3.141592653589793

format short e
pi

ans =
3.1416e+00

format long e
pi

ans =
3.141592653589793e+00

format bank

pi
ans =

3.14
format +
pi
ans =

+

format rat
pi
ans =

355/113
format hex % Hexadecimal representation
pi
ans =

400921fb54442d18

format % Resets to the default formatting

Page 15 of 27

Discrete Mathematics in MATLAB

In the previous experiment, we learnt how to do various vector and matrix operations such as logical,
arithmetic, and other manipulations. We mostly applied basic trigonometric and linear algebra math.
In this section, we will learn how to handle mathematical sets in the same way you learnt in basic
math and discrete math courses.

Sets in MATLAB

MATLAB allows users to enter mathematical sets as a vector or a matrix (array) - more on vectors
and matrices later. For example, lets generate the two mathematical sets S; and S;:

S, =11,5,4,6,7,7,3,5,2,8,0,1,1,2,7,8,5,4,2,4, 1,4}
S, =140,9,8,9,9,7,3,10,5,3,6,2,4,1,1,1,11,3}

as two vectors:

S1
S2

[1J 5’ 4) 6)7)7J 3) 5) 2) 8J 0) 1J 1.’ 2.’ 7.’ 8 JSJ 4J 2J 4.’ 1.’ 4];
[@J 9’ 8) 9) 9) 7) 3) 19) 5) 3J 6J 2J 4.’ 1.’ 1.’ 1.’ 11—' 3];

To extract the numbers that occur in the set without any repetitions; that is to extract the unique
numbers in the set, use the function unique:

unique(S1)
ans =
0 1 2 3 4 5 6 7 8
unique(S2)
ans =
0 1 2 3 4 5 6 7 8 9 10 11

The function unique returns the existing elements in the set in sorted ascending order. If you wish to
see the unique numbers in the set in the order they appear in, then use:

unique(S1, 'stable')

ans =
1 5 4 6 7 3 2 8 0

To merge two sets together; that is, to perform the operation S; U $;, use the union command:

union(S1, S2)

ans =

Page 16 of 27

The union commands can work with sets stored in matrices of different sizes and shapes. There is
no need for the vectors or matrices to match each other's dimensions.

To find the elements that appear in both sets; that is, to perform the operation S;NS,, use the
intersect command:

intersect(S1, S2)

ans =
0 1 2 3 4 5 6 7 8

The default output is sorted in ascending order, unless you use 'stable’ as before.

To see the elements that exist in one set but not the other, use set difference command setdiff.
Note that the order you use in performing this operation matters:

setdiff(S1, S2)

ans =
1x0 empty double row vector

setdiff(s2, S1)

ans =
9 10 11

Another method to check if an element exists in a set is to use the ismember command. It returns
logical 0 if the number does not exist in the set, and | otherwise. To check if the numbers 5, 8, 10

and 15 existin S;:
ismember([5, 8, 10, 15], S1)

ans =
1 0 0

Discrete Mathematics

MATLAB has extremely powerful functions in the domain of discrete mathematics. We list them in
the following table:

Page 17 of 27

factor Returns the prime factors of the number n

isprime | Determine which array elements are prime

primes Lists prime numbers less than or equal to the input value

nextprime | Returns the next prime after input number n

nthprime | Returns the n'f prime number

|
|
|
|
prevprime | Returns the previous prime before input number n |
|
|
|
|

ged | Greatest common divisor

lem | Least common multiple

factorial | Factorial of input n!

perms Returns a matrix containing all permutations of the elements

of the input vector in reverse lexicographic order

Let's try few examples. To list all prime numbers under 50, write:
primes(50)
ans =
471 -

The 100" prime number is:

nthprime(100)
ans = 541

To factor the number 567838 into its factors, use:

factor(567849)

ans =
2 2 2 2 2 3 5 7 13 13

The least common multiple of 10,6 is:

lcm(10, 6)
ans = 30

To list all possible combinations of the numbers 3, 7, 9, use the function perms:

perms([3, 7, 9])

Page 18 of 27

ans =

w w J 3w o
~ O W W wJ
O J 0 Ww JWw

Performance Timing in MATLAB

Many times, we are not only interested in writing a correct code, but also an efficient code.
Performance timing is important in order to compare how much time has lapsed in writing two
versions of the same function or algorithm.

There are many ways to profile the timing of your code. but we will only explain a simple one:

¢ Use the tic and toc commands at the beginning and end of the function you want to profile.
Once you execute the toc command, the elapsed time will appear. (RECOMMENDED)
tic
toc
Elapsed time is ©.001809 seconds.

NOTE: Usually, we do not profile the execution time based on a single execution. We place
our function or algorithm in a loop and run it hundreds of times, then we take the average of
execution times.

We shall learn about more MATLAB tools for code timing and profiling in the next experiment.

Number Rounding and Rational Fraction Approximation

MATLAB also offers functions that perform the rounding operations that you are familiar with from
math or previous programming courses. We summarize these functions in the following table:

Numeric Functions

ceil Rounds to the nearest integer toward .
fix Rounds to the nearest integer toward zero.
floor Rounds to the nearest integer toward - .
round Rounds towards the nearest integer.
sign Signum function.

The ceil and floor functions are the ones with the math symbols [x]and |x|, respectively. The
fix function returns the number closest to zero. The differences are clearer when comparing the
results of positive and negative numbers. The sign function is a very useful function which returns
the signs of the input number(s). We show some insightful examples in the following figure:

Page 19 of 27

ceil [-5.27) -5 ceil [5.27) 6
fix (-5.27) -5 fix (5.27) 5
floor (-5.27) -6 floor (5.27) 5
round (-5.27) -5 round (5.27) 5
round (-5.27,1) | -5.3 round (5.27,1) | 5.
sign -1 sign (5.27) 1
> | | | | | .

-5.27 -1.67] 1.67 5.27

ceil {-1.67) -1 ceil (1.67) 2

fix (-1.67) -1 fix (1.67) 1

floor {-1.67) -2 floor (1.67) 1

round {-1.67) -2 round {1.67] 2

round (-1.67,1) | -1.7 round (1.67,1) | 1.7

sign (-1.67) -1 sign {1.67) 1

The rounding function round has different syntax for different cases; the default syntax takes one
input (the number to be rounded) and works at the “half digit” boundary. Positive numbers with
fractional parts 0.5 - 0.99... get rounded to the next largest number; otherwise, they get rounded to

the lower integer value. Negative numbers rounding works in reverse. Consult the examples in the
table above.

Let us try few rounding examples; let's round the number: 67585.891:

round(67585.891) % Default roundig behaviour
ans = 67586

If we want to round to one decimal point:

round(67585.891, 1)

ans = 6.7586e+04

Notice that the result is given in engineering format, and that we cannot see the effect clearly.
Precede the round command with format long

format long
round(67585.891, 1)

ans =
6.758589999999999%¢e+04

Notice that we expect the result to be 67585.9 yet MATLAB returns a result of 67585.899999999.....
This is due to the IEEE 754 standard and hardware design of floating-point units inside computers

Page 20 of 27

which does not always allow us to represent floating-point error precisely. We shall discuss this in
detail in a future experiment.

and to two decimal points:

format long
round(67585.891, 2)

ans =
6.758589000000000e+04

Notice that we expect the result to be 67585.89 and MATLAB indeed returns the correct result.

Alternatively, one can round to the nearest 10 or nearest 100 or 1000 by writing:

round(67585.891, -1)

ans =
67590

round(67585.891, -2)

ans =
67600

round(67589.891, -3)

ans =
68000

Commands for Managing the Work Session
In this section, we will present commands that are quite useful in managing your workspace.

We already know that all variables you declare in any MATLAB session can be found under the
Workspace window (default location --> left pane). You can also list the session variables in the
command window by using this command:

who
Your variables are:

S1 a a2 b b2 c1 d d2 el f1 g g2
S2 al ans bl ¢ c2 di1 e e2 f2 g1l

If you need further details about your variables, you can use:

Page 21 of 27

whos

Name Size Bytes Class Attributes
S1 1x22 176 double

S2 1x18 144 double

a 1x1 8 double

al 1x1 16 double complex
a2 1x1 8 double

ans 1x1 8 double

b 1x1 16 double complex
bl 1x1 16 double complex
b2 1x1 16 double complex
c 1x1 8 double

cl 1x1 16 double complex
c2 1x1 8 double

d 1x1 8 double

di 1x1 16 double complex
d2 1x1 16 double complex
e 1x1 8 double

el 1x1 16 double complex
e2 1x1 8 double

f1 1x1 16 double complex
f2 1x1 16 double complex
g 1x1 8 double

gl 1x1 16 double complex
g2 1x1 8 double

Notice, that the size of most variables we used thus far is listed as 1x1. This is because all our
variables are scalars (not vectors nor matrices (arrays), just single-valued numbers). Even the
complex numbers have a size of 1x1 as they are treated as one unit. This size attribute is different
than the actual size these variables take inside the memory. You can find the memory size under
Bytes. Since most our variables are double-precision floating-point numbers, we expect they will use
8 bytes, and complex numbers will take 16 bytes to store both the real and imaginary parts. You can
find the data type of your variables under the Class attribute.

In huge projects, you might lose track of variables. You might forget if you have used the variable
‘num’' for example, and you don't need to override it and cause errors in your program. To check if a
variable exists, use the exist function. It takes in ONE variable name in single quotations or directly
listed next to it. It returns 0 or 1 depending if the variable exists or not.

exist('num")

ans =
)
exist a
ans =
1

To delete variables from the workspace, use clear then list the variable names to be deleted. Let's
delete variables a, b, ¢, and d.

Page 22 of 27

exist a

ans =

clear a b c d
exist a

ans =
0

To clear all variables in the workspace, simply write clear on its own:
clear

To clear the content of the command window, simply use:

clc

The above command does not delete the history of your commands, only the command window.
You can still see all previous commands by pressing the UP button or writing commandhistory.

When you are writing large MATLAB scripts and functions (discussed in later experiments), you are
only interested in the final output. To suppress (hide) the output of MATLAB lines, use the semicolon
at the end. Compare:

a = (5+43)%(6 - 23)

a =
38.000000000000000 +14.0000000000000001

b = (7 + 63)*(7 - 93);

In both cases, the output is computed and stored in the variables a and b. In the first case, MATLAB
shows the output in the command window, while in the latter case, the semicolon suppressed the
output from showing. To see the output of the variable b, you can either type the variable directly:

1.030000000000000e+02 - 2.100000000000000e+011

or use the display disp() function:

disp(b)

1.030000000000000e+02 - 2.100000000000000e+011

Page 23 of 27

When you are writing long lines in MATLAB, and you wish to continue writing on the next line, you
can use the Ellipsis (three dots ...)

1245 + 86844 + 767683 + 34334 +
456 + 97800

ans =
988362

You can automatically capture and log (store) all entered command, keyboard input and command
window output using the diary command by using it with the on and off switches. MATAB will
create a text file called diary in the working directory that contains all session command window
interactions.

diary on
diary off

You can also display the content of text files inside MATLAB's command window by using the type
command. MATLAB will look for the supplied filename inside the current path (working directory), or
any added path. Otherwise, you need to provide the full path to the type command:

type sampleNumbers.txt

.0975 0.1576 0.1419 0.6557 0.7577 0.7060 0.8235 0.4387
.2785 0.9706 0.4218 0.0357 0.7431 0.0318 0.6948 0.3816
.5469 0.9572 0.9157 0.8491 0.3922 0.2769 0.3171 0.7655
.9575 0.4854 0.7922 0.9340 0.6555 0.0462 0.9502 0.7952
.9649 0.8003 0.9595 0.6787 0.1712 0.0971 0.0344 0.1869

OO 0000

The file sampleNumbers.txt contains a few lines of numbers that can be printed inside the
command window.

To quit MATLAB from the command line, simply write quit.
quit
MATLAB Help and Documentation

MATLAB has an extensive well-written documentation with numerous examples as well an online
MATLAB answers forum. In MATLAB, there are two options to access info on all commands: a quick
help command and another for full documentation. For example, if you need to quickly see the
function and syntax of a MATLAB command, type help followed by the command name, and a short
documentation will appear inside the command window and it will list all available MATLAB
commands that handle binary numbers one way or another:

help format

format Set output format.
format with no inputs sets the output format to the default appropriate

Page 24 of 27

for the class of the variable. For float variables, the default is
format SHORT.

format does not affect how MATLAB computations are done. Computations
on float variables, namely single or double, are done in appropriate
floating point precision, no matter how those variables are displayed.
Computations on integer variables are done natively in integer. Integer
variables are always displayed to the appropriate number of digits for
the class, for example, 3 digits to display the INT8 range -128:127.
format SHORT and LONG do not affect the display of integer variables.

format may be used to switch between different output display formats
of all float variables as follows:

format SHORT Short fixed point format with 4 digits after the
decimal point.
format LONG Long fixed point format with 15 digits after the

decimal point for double values and 7 digits after
the decimal point for single values.

format SHORTE Short scientific notation with 4 digits after the
decimal point.

format LONGE Long scientific notation with 15 digits after the
decimal point for double values and 7 digits after
the decimal point for single values.

format SHORTG Short fixed format or scientific notation,
whichever is more compact, with a total of 5 digits.
format LONGG Long fixed format or scientific notation, whichever

is more compact, with a total of 15 digits for
double values and 7 digits for single values.
format SHORTENG Engineering format with 4 digits after the decimal
point and a power that is a multiple of three.
format LONGENG Engineering format that has exactly 15 significant
digits and a power that is a multiple of three.

format may be used to switch between different output display formats
of all numeric variables as follows:
format HEX Hexadecimal format.
format + The symbols +, - and blank are printed
for positive, negative and zero elements.
Imaginary parts are ignored.
format BANK Currency format with 2 digits after the decimal
point.
format RATIONAL Approximation by ratio of small integers. Numbers
with a large numerator or large denominator are
replaced by *.

format may be used to affect the spacing in the display of all
variables as follows:

format COMPACT Suppresses extra line-feeds.
format LOOSE Puts the extra line-feeds back in.

If you need to access the full documentation, simply type doc followed by the command name. The
documentation window will open outside of MATLAB.

doc format

Page 25 of 27

But what if you don't know the command name? How to find a certain command that does a specific
job you want? In this case, use the command lookfor with one keyword that describes what you
want, and MATLAB will list all available close commands with a summary of what they do.

For example, to look for MATLAB commands that can work with binary numbers, simply write:

lookfor binary

bsxfun Binary Singleton Expansion Function

fread Read binary data from file.

fwrite Write binary data to file.

bin2dec Convert text representation of binary number to double
value

dec2bin Convert decimal integer to its binary representation
binary Sets binary transfer type.

binary Sets binary transfer type.

bsxfun Binary Singleton Expansion Function
invokeBinaryComparison Invokes GE, LT etc.

bops o = BOPS(obj) Returns the binary operator nodes in obj
isbop b = ISBOP(obj) Boolean array, true if node is binary
binaryVectorToDecimal Convert binary vector to a decimal number.
binaryVectorToHex Convert binary vector to a hexadecimal character string.
binvec2dec Convert binary vector to decimal number.

dec2binvec Convert decimal number to a binary vector.
decimalToBinaryVector Convert decimal number to a binary vector.
hexToBinaryVector Convert hex number to a binary vector.

dspblkbinaryfilereader
dspblkbinaryfilewriter
dec2mvl

DSP System Toolbox binary file reader block
DSP System Toolbox binary file writer block
Convert decimal integer to a binary string.

fibinscaling Fi Binary Point Scaling Demo

fiscalingdemo Perform Binary-Point Scaling

bin Binary representation of stored integer of fi object
isscalingbinarypoint Determine whether fi object has binary point scaling
BinaryPointScaling

bwarea Area of objects in binary image.

bwareafilt Extract objects from binary image by size.
bwareaopen Remove small objects from binary image.
bwboundaries Trace region boundaries in binary image.
bwconncomp Find connected components in binary image.
bwconvhull Generate convex hull image from binary image.
bwdist Distance transform of binary image.

bwdist_old Distance transform of binary image.
bwdistgeodesic Geodesic distance transform of binary image.
bweuler Euler number of binary image.

bwfill Fill background regions in binary image.
bwhitmiss Binary hit-miss operation.

bwlabel Label connected components in 2-D binary image.
bwlabeln Label connected components in binary image.
bwmorph Morphological operations on binary image.
bwmorph3 Morphological operations on binary volume.
bwpack Pack binary image.

bwperim Find perimeter of objects in binary image.

You can see in the list two functions of interest: bin2dec and dec2bin which allows you to convert
between binary and decimal numbers in text formatting. Try them out.

Page 26 of 27

Experiment version 1.2

Original Experiment October 5th, 2020
Last Updated March 3rd, 2022

Dr. Ashraf Suyyagh - All Rights Reserved

Revision History

Ver. 1.2 (March 2022)

Merged the first and third Experiments together

Removed discussion for hexadecimal and binary number formats section.

Removed the Integer Arithmetic section

Removed the time and date sections

Removed serial dates section

Removed the characters and strings sections

Removed the sections related to writing and loading excel sheets and text files
using the command line and keep the GUI import tool yet moved it to the
second experiment.

Ver. 1.1 (July 2021)

Corrected formatting and spelling mistakes

Added the diary and type commands.

Added discussion for hexadecimal and binary number formats.

Page 27 of 27

University of Jordan
School of Engineering and Technology
Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Experiment 2 - MATLAB Fundamentals |l

Author: Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 2 - MATLAB FUNAAMENTAIS 1lcooeeiiiiiiiiiiiee et e e e e e e e nnneaeeeeas 1
Scalars, VECOrS, and MATCESouuiiiiiiiiee ettt e et e sttt e e e b et e e s enbe e e e e anreeaeas 1
RV <ol (0 3SR 2
CrEALING VBCIOIS ..o 2

FaY o] 01T e [T Vo IV =Tt o =SS 4
Useful techniques for Creating large VECIOISuuuuuiriiiiiiiiiiiiiii e 5
Vi o = PSPPI 7
Vector and Matrix Indexing and AAAreSSINGuuuuerireeeriiiiiiirie e e e e e e e e e re e e e e e e ennneneeees 9
Special MATLAB Vectors and MALIICESuviiiiieiiiiiiiiiiiiee e e essiieee e e e e e e sseeee e e e e e s annnnaeeeeeeeenns 12
MALFTIX IMANTPUIBTION. 1.1ttt s 14
SOorting VECtOrs and MALIIICESuuiiiiieiiiiiiiiiiie ettt e e e e s e e e e e e e et e e e e e e e s snnnsseaeaeeaeeeans 18
Vector and Matrix Mathematical OPerationsSuevieeeiiiiiiiiiiieee e e e e e snererr e e e e e e 19
Vector and MatriX LOgiCal OPEIratiONSuviiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeseseeeeeeeeeeeeeneearee 24
MUltiIdiMENSIONAL MBLHCESeeeiieiiiiee ettt ettt e e e e e e e aaneea e 26
(D= 1= W L] o o] g =T o I md (= o] o Lo =TS Vo PSSO 28
Loading and Storing MATLAB VariabIEeSoooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 28
Using the INteractive IMPOIT TOOI........eiiiiiiie et a e e e e e e e e e ns 28
Importing Spreadsheets using the GUI T0O0]ccuuiiiiiie e e e e 29
Importing Text Files using the GUI TOO...........uuuiiiii s 29

Scalars, Vectors, and Matrices

In the previous experiment, we have introduced single-valued variables and many of the scalar
operations associated with them. However, MATLAB really shines when working with vectors and
matrices. In many other programming languages that you might have learnt already (C++ and Java),
you stored vectors and matrices inside 1D and 2D arrays, respectively. You conducted all array
related operations through loops. This is time consuming and error prone.

In MATLAB, storing vectors and matrices is straightforward through a simple assignment operator.
Further, all associated operations DO NOT need loops. You can use simple mathematical
operations almost directly.

This is one main reason why MATLAB is widely used by millions of engineers and scientists.
Page 1 of 31

MATLAB vectors and arrays can hold numbers, characters (array of strings), or logical values (0 or
1). But an array or matrix CANNOT hold a mix of these types at the same time.

Previously, when we used the whos command, we noticed that all single-valued variables (scalars)
had a size of 1x1. MATLAB treats scalars as one-element vectors of size 1x1.

Vectors

A vector is simply a one-dimensional matrix. In Physics and Mathematics, and other engineering
courses, you often worked with vectors that are projected onto a 3D Cartesian coordinate system.
The vector in this coordinate system is often given as:

xi+ yj+zk

where x, y, z are the scalar magnitudes of the vector projections onto the Cartesian axes.

A
Tk
I~

"y P=(z,y,z
k.“l.

J s
o)—>4 Y
R/)

Creating Vectors

In MATLAB, you can easily define a 3D vector in two forms: a row vector or a column vector.

5

So, we can write 5i + 8j — 9k in row form: [5 8 —9] or column form: 8 | as follows:
-9

Row form (Use commas to separate elements):

vl = [5, 8, -9]

vl =

Page 2 of 31

Column form (Use semicolons to separate elements):

v2 = [5; 8; -9]

v2

5
8
-9

You can convert between column and row vectors using the transpose operator (), for example:

v3 = [5, 8, -9]° % Creates a column vector by transposing a row vector
v3 =
5
8
-9
v4d = [5; 8; -9]° % Creates a row vector by transposing a column vector
v4 =
5 8 -9
v5 = v3' % Creates a column vector by transposing a row vector
v5 =
5 8 -9

Vectors are not restricted to 3-elements. You can create row or column vectors of any size n. Use
whos command with the variable name to see detailed info about the vector variable.

v6 = [0.5, 6, 9, 0, 0, 12, -8, 8] % This is a 1x8 row vector
V6 =
0.5000 6.0000 9.0000 0 0 12.0000 -8.0000 ---
whos v6
Name Size Bytes Class Attributes
v6 1x8 64 double
v7 = [0.9; @; ©0; 9; -9; 1; -3; 6] % This is a 8x1 column vector
v7 =
0.9000
0
0
9.0000
-9.0000
1.0000
-3.0000
6.0000

Page 3 of 31

whos v7
Name Size Bytes Class Attributes

v7 8x1 64 double

Note that unlike C++ or Java, we did not need to declare and reserve memory for a 1D array then
use loops to store elements in the 1D array. It is straightforward and simple.

Appending Vectors

You can create vectors from other vectors by appending them together. The only condition is that
these vectors are of the same data type and shape; that is, you can only append row vectors
together, or column vectors together, but not both.

Let's append the row vector vl with the row vector v6 (as before, use the comma in creating row
vectors):

v8 = [vl1, v6]

v8 =
5.0000 8.0000 -9.0000 0.5000 6.0000 9.0000 0 -

Let's append the column vector v2 with the column vector v7 (as before, use the semicolon in
creating column vectors):

v9 = [v2; V7]

V9 =
5.0000
8.0000

-9.0000
0.9000
0

0
9.0000
-9.0000
1.0000
-3.0000

Appending row and column vectors will result in an error, try:

[vl, v7]
[vl; v7]

You can append row vectors with column vectors ONLY if you transpose one of them to match the
other, try:

v10 [vi, v7']

v1le =
5.0000 8.0000 -9.0000 0.9000 0 0 9.0000 ---

Page 4 of 31

vil [v2; v6']

vlil =
.0000
.0000
.0000
.5000
.0000
.0000
0
0
12.0000
-8.0000

|
O oy O WO O Ul

Useful techniques for creating large vectors

Many times, you will work with vectors of hundreds or thousands of elements. Hand entry is
impossible.

If you want to create a vector with regularly spaced elements, use the colon (:). The syntax is
(m: q : n] where:

m is the starting point.

g is the spacing between elements.

n is the upper limit (not necessarily the last element, but the last element will not exceed »n).
if m — n is an integer multiple of ¢, then » will be the last element.

In this syntax, the number of elements is given by:

No = L"""JH

q

vi2 = [0: 2: 8]
v12 =

0 2 4 6 8
vi3 = [@: 2: 7]
vl3 =

0 2 4 6
vid = [1: 1: 10]
vl4d =

1 2 3 4 5 6 7 8 9 10

Notice that if don't specify a value for the increment ¢, the default value is 1.

Page 5 of 31

v15 [1:10]

vl5 =
1 2 3 4 5 6 7 8 9 10

The increment ¢ can be a floating-point number, or negative:

v16 [0: ©.25: 4]

v16 =
0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 --
vl7 = [10: -2: -10]

vl7 =
10 8 6 4 2 0 -2 -4 -0 -8 -10

To retrieve the number of elements in a vector, use the length command:
length(v12)
ans = 5
length(v16)
ans = 17

If you need to create a vector with n elements, and you know the starting and ending points, but not
the exact spacing, you can use the linspace command. It has the syntax:

linspace(start, end, n)

The increment is automatically computed and is equal to:

Increment = €nd = start
n—1

v1l8 = linspace(5, 8, 31)
v18 =

5.0000 5.1000 5.2000 5.3000 5.4000 5.5000 5.6000 -

The above command is similar to:

vl9 = [5:0.1:8]
v19 =

5.0000 5.1000 5.2000 5.3000 5.4000 5.5000 5.6000 ---

In engineering problems, sometimes we need entries with logarithmic spacing instead of regular
(fixed) spacing. In this case, we can use the logspace command. By default, this command creates

Page 6 of 31

50 elements unless the number of entries is specified. The elements lie between 10¢ and 107,
where a and b are user defined.

v20 = logspace(1,5)
v20 =

10° x
0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 -

Notice that the above command provides the results in engineering notation misleading you to think
that some elements are identical (e.g., 0.0001). In fact, if you change the display format to long you
will see more digits of the generated number.

v21 = logspace(1l,5, 5)

v21l =
10 100 1000 10000 100000

Matrices

MATLAB matrices are similar in notion to 2D matrices in C++ and Java, albeit, much simpler to use.
A matrix consists of both rows and columns. Therefore, a vector is a special case of a matrix that
has either one row or one column.

To create a matrix in MATLAB, elements of each row are separated by a comma (,), and rows are
separated by a semicolon. To save this matrix into variable M :

24103
-9 067
14126

M=[24103; -906 7; 14 12 6]

M =
2 4 10 3
-9 0 6 7
1 4 12 6

You can retrieve the dimensions of the matrix by using the size function. It will return the number of
rows and column, respectively. In this case, the size of M is 3x4.

size(M)

ans =
3 4

To retrieve the total number of elements in the matrix, use the numel command (short for number of
elements). You can use this command with vectors as well, and in this specific case it will be
equivalent to the length command .

Page 7 of 31

numel(M)
ans = 12

Suppose we have two matrices:
K= 1463 - 25178
=606 7 S -1440

K=1[1, 4, 6, 3 ; -6, 0, 6, 7]

You can concatenate the two matrices horizontally or vertically only if they match each other in the
number of elements along the side you wish to concatenate them in.

We can concatenate matrices K and L vertically in three different ways:

Vi = [K; L] % Using the semicolon
V1l =
1 4 6 3
-6 0 6 7
2 5 17 8
-1 4 4 0
V2 = vertcat(K, L) % Using the explicit vertical concatenation
V2 =
1 4 6 3
-6 0 6 7
2 5 17 8
-1 4 4 0
V3 = cat(1,K,L) % Using the generic concatenate function. 1 means

vertical concatenate, 2 horizontal

V3 =
1 4 6 3
-6 0 6 7
2 5 17 8
-1 4 4 0

Page 8 of 31

We can concatenate matrices K and L horizontally in three different ways:

H1 = [K, L] % Using the colon
H1 =
1 4 6 3 2 5 17 8
-6 0 6 7 -1 4 4 0
H2 = horzcat(K, L) % Using the explicit horizontal concatenation
H2 =
1 4 6 3 2 5 17 8
-6 0 6 7 -1 4 4 0
H3 = cat(2,K,L) % Using the generic concatenate function. 1 means

vertical concatenate, 2 horizontal
H3 =
-6 0 6 7 -1 4 4 0

Vector and Matrix Indexing and Addressing

The most important rule which you must never forget is that MATLAB indices always start from
ONE, not 0.

myVector = [2 : 0.5: 5]

myVector =
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000

To access the first, fifth, and last elements in this vector, one can write:

myVector(1)

ans = 2

myVector(5)

ans = 4
myVector (numel(myVector))
ans = 5

You can retrieve any element in an array either using linear indexing or subscript indexing. In
linear indexing, you can think of the array as consecutive columns whose elements are numbered
from 1 to n. Subscript indexing is similar to the one you use in C++ and Java, with the only
difference that indices start from 1 not 0.

Page 9 of 31

linear indices column

¥

1 4 7 1,1 | 1,2 | 1,3

2 5 8 2,1 | 2,2 | 2,3
L row

3 6 9 3,1 | 3,2 3,3
_'“' L) L 2 L)

So, in the previous example with the matrices K and L, one can access the element 0 in matrix K
by either:

K(4)

ans = 0
K(2,2)
ans = @

To replace the last element in matrix L by 5, one can write:

L(numel(L)) = 5
L =
2 5 17 8
-1 4 4 5
L(2,4) = 5
L =
2 5 17 8
-1 4 4 5

The colon () operator is used to access a range of indices. For example, to retrieve all elements in
matrix K, one can write:

K(:)

ans =

W ooy O > O

Page 10 of 31

To retrieve only the second row in matrix K, one can write:

K(2, :) % This means access the second row, and retrieve all its elements.

-6 0 6 7

To retrieve the middle two columns in array K :

K(:, 2:3)
ans =
4 6
0 6
This means access all columns from 2 to 3, and retrieve all rows.

To delete the last column in matrix L., one can write:

disp(L)
2 5 17 8
-1 4 5
L(:, 4) = []
L =
2 5 17
-1 4 4

This means, delete all elements in the fourth column.

[21 53 17 58 60]
17 48 94 70 99
15 44 14 37 19
68 78 88 80 15
11 58 77 10 23
132 26 78 79 10

Suppose the matrix A is given as: A =

A = [21, 53, 17, 58, 60;
17, 48, 94, 70, 99;
15, 44, 14, 37, 19;
68, 78, 88, 80, 15;
11, 58, 77, 10, 23;
32, 26, 78, 79, 10]

A =
21 53 17 58 60
17 48 94 70 99
15 44 14 37 19

Page 11 of 31

68 78 88 80 15
11 58 77 10 23
32 26 78 79 10

To access the inner elements without the border elements, one can write:

A(2:5, 2:4)

ans =
48 94 70
44 14 37
78 88 80
58 77 10

Also note how we used the ellipses (...) to write the array in a more eye-friendly way.
Special MATLAB Vectors and Matrices
MATLAB has functions to create special vectors and matrices that are useful in many instances.

The first matrix is an ALL-ones matrix. A matrix whose elements are initialized to the value 1. The
second matrix is an ALL-zeros matrix whose elements are initialized to the value of 0.

You can create row vectors, column vectors, or matrices by passing the number of rows and
columns to the function. If you pass one argument r, the function will generate a square matrix of
size nxn.

ones(1,4)
ans =
1 1 1 1
ones (3,1)
ans =
1
1
1
ones(2,3)
ans =
1 1 1
1 1 1
ones(3)
ans =
1 1 1
1 1 1
1 1 1

You can do the same as above using the zeros function:

Page 12 of 31

zeros(1,4)

ans =

zeros (3,1)

ans =

(@)

zeros(2,3)

ans =

0 0 0
0 0 0
zeros(3)
ans =
0 0 0
0 0 0
0 0 0

The identity matrix is a matrix whose diagonal is ones while all other elements are zero. Remember,
that multiplying any SQAURE matrix with a SQAURE identity matrix results in the same original
matrix. Use the eye function to create identity matrices.

eye (4)

ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

You can also create rectangular identity matrices. In these matrices, columns whose elements don't
fall on the diagonal are zeroed out.

eye(2, 3)

ans =
1 0 0
0 1 0

Block diagonal matrices combine multiple arrays together but aligns them diagonally. All remaining
empty matrix locations are filled with zero. To do this in MATLAB:

Page 13 of 31

Al = ones(2,2);

A2 = 2*ones(3,2);

A3 = 3*ones(2,3);

B = blkdiag(Al,A2,A3)

B = 7x7
1

OO 000
O OO0
OO NDNNOO
OO NDNNOO
wwoooooe
w woooooe
w woooooe

A magic matrix is a special matrix with interesting mathematical properties:

e |tis a square matrix of size n xn,and n > 3
¢ All elements in the matrix fall between 1 and »?
¢ All rows and all column elements sum to the same value

magic(3)

ans = 3x3
8 1 6
3 5 7
4 9 2

Matrix Manipulation
Similar to vectors, you can perform the matrix transpose operation where rows become columns.
For example:

24103
M=([-9067
14126

M=[24103; -906 7; 14 12 6]

M = 3x4
2 4 10 3
-9 0 6 7
1 4 12 6

And one can obtain its transpose as:

Page 14 of 31

transpose(M)

ans = 4x3
2 -9 1
4 0 4
10 6 12
3 7 6

or simply by using the (') operator:

M
ans = 4x3

2 -9 1

4 0 4

10 6 12

3 7 6

If you have a matrix and wish to create another matrix out of its replicas, you can use the repmat
command. In this command, you specify how many times is the matrix replicated horizontally, then
vertically, respectively.

repmat(M, 2, 3)

ans = 6x12
2 4 10 3 2 4 10 3
-9 0 6 7 -9 %] 6 7
1 4 12 6 1 4 12 6
2 4 10 3
-9 %] 6 7
1 4 12 6

A similar command is repeat elements repelem. It works on vectors and matrices.

Suppose we have a small vector of three values [1 0.5 0] and you wish to repeat each element
three times:

repelem([1, ©.5 0], 3)
ans = 1x9

1.0000 1.0000 1.0000 0.5000 0.5000 0.5000 0
0 0

Page 15 of 31

To repeat each element in matrix M three times horizontally, and two times vertically, one can write:

repelem(M,3,2)

ans = 9x8
2 2 4 4 10 10 3 3
2 2 4 4 10 10 3 3
2 2 4 4 10 10 3 3
-9 -9 0 (%] 6 6 7 7
-9 -9 0 (%] 6 6 7 7
-9 -9 0 (%] 6 6 7 7
1 1 4 4 12 12 6 6
1 1 4 4 12 12 6 6
1 1 4 4 12 12 6 6

You can reshape a matrix by using the reshape command which takes in as input a matrix, and the
dimensions of its new shape.

reshape(M, 6, 2)

ans = 6x2
2 10
-9 6
12

EE R
AN w

However, the number of elements in the new shape must be the same as in the old matrix.
Otherwise, MATLAB will issue an error.

reshape (M, 5, 3) % No. of elements 15 instead of 12, FATL

The command circshift (A, K, dim) circularly shifts the elements in matrix A by K positions. The
parameter dim specifies if one wishes to do the circular shift on the rows (dim = 1), or columns (dim
= 2). These are the rules of how this command works:

o If K is positive, dim =1, rows move downward
e If Kis negative, dim = 1, rows move upward

o If Kis positive, dim =2, columns move left

¢ If K is negative, dim = 2, columns move right

circshift(M, 1, 1)

ans = 3x4
1 4 12 6
2 4 10 3
-9 (%] 6 7

Page 16 of 31

circshift(M, -1, 1)

ans = 3x4
-9 (%] 6 7
1 4 12 6
2 4 10 3

circshift(M, 1, 2)

ans = 3x4
3 2 4 10
7 -9 (%} 6
6 1 4 12

circshift(M, -1, 2)

ans = 3x4
4 10 3 2
(%] 6 7 -9
4 12 6 1

You can rotate any vector or matrix counter-clockwise by 90° or its multiples by using the rot90

command:

rot9o(M, 1) % Rotate M counter-clockwise by 90 degrees
ans = 4x3

3 7 6

10 6 12

4 (%] 4

2 -9 1
rot9o(M, 3) % Rotate M counter-clockwise by 90 x 3 = 270 degrees
ans = 4x3

1 -9 2

4 (%] 4

12 6 10

6 7 3

You can flip arrays either around their central row or column using two flip commands:

Page 17 of 31

fliplr(M) % Flip array left to right

ans = 3x4
3 10 4 2
7 6 (%} -9
6 12 4 1
flipud(M) % Flip array yp to down
ans = 3x4
1 4 12 6
-9 (%] 6 7
2 4 10 3

To extract the diagonal elements of the matrix, simply use the diag command:

diag(M)

ans = 3x1
2
0
12

Sorting Vectors and Matrices

sort (A) sorts the elements of vector or matrix A in ascending order.

o If Ais a vector, then sort(A) sorts the vector elements.
o If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each column.

sort (M)

ans = 3x4
-9 (%] 6 3
1 4 10 6
2 4 12 7

To sort the elements in each row, simply sort the transpose of a matrix:

sort(M")
ans = 4x3
2 -9 1
3 0 4
4 6 6
10 7 12

Page 18 of 31

https://localhost:31515/static/help/matlab/ref/sort.html?searchHighlight=sort&searchResultIndex=1#bt8nojg-1-A

To sort the elements in descending order, the command slightly changes to sort(A,'descend’)

sort(M, 'descend")

ans = 3x4
2 4 12 7
1 4 10 6
-9 (%] 6 3

Finally, an interesting sorting command is sortrows. Unlike the sort command, this command sorts
the entire row block based on the values of the first column. If there is a tie, it decides based on the
values of the second column, and so.

sortrows (M)

ans = 3x4
-9 (%] 6 7
1 4 12 6
2 4 10 3

Vector and Matrix Mathematical Operations

The beauty of MATLAB is that it allows quick mathematical and logical operations on vectors and
matrices.

Again, suppose we have the previous two matrices and a third square matrix:
K= 1463 L_25178 P_57
T |-6067 S |-1440 181

K=[1J41613;_6)616)7]

K = 2x4
1 4 6 3
-6 0 6 7

L =1[2, 5, 17, 8; -1, 4, 4, 0]

L = 2x4
2 5 17 8
-1 4 4 0

Page 19 of 31

P = [SJ 7; 8, 1]

P = 2x2
5 7
8 1

To add or subtract them together on an element-by-element basis, you simply write:

K + L
ans = 2x4
3 9 23 11
-7 4 10 7
K - L
ans = 2x4
-1 -1 -11 -5
-5 -4 2 7

We know from mathematics that matrix multiplication is different than regular multiplication. You
cannot multiply any two matrices together unless they satisfy a matrix dimension restriction:

1"array : n X m

2"array @ m X |

That is the number of columns of the first array equals the number of rows in the second array. For
example, we cannot perform matrix multiplication on the arrays K and L above as MATLAB will give
an error because the size of each is 2 x 4.

K * L

Yet, multiplying K by the transpose of L works fine because K has a size of 2 x 4, the transpose of L
has the size of 4 x 2, and the result will have a size of 2 x 2.

K * L'

ans = 2x2
148 39
146 30

Remember matrix multiplication is not commutative. AB # BA. So, multiplying the transpose of L by
K in this order will give a totally different result:

Page 20 of 31

L' * K

ans = 4x4
8 8 6 -1
-19 20 54 43
-7 68 126 79
8 32 48 24

But what if you wish to do element-by-element multiplication, and not matrix multiplication. In this
case, you must precede the * operator by a dot, so we have a new operator (.*)

2 20 102 24

To do element-by-element operations on matrices, you must precede any operator by a dot. For
example, dividing each element by 8:

K ./ 8

ans = 2x4
0.1250 0.5000 0.7500 0.3750
-0.7500 0 0.7500 0.8750

Or raising each element to a power of 2 or 4:

K .~ 2
ans = 2x4
1 16 36 9
36 0 36 49
K .~ 4
ans = 2x4
1 256 1296 81
1296 (%} 1296 2401

Page 21 of 31

However, if you write:
K~ 2

It will flag an error because this means you are multiplying K x K and their dimensions do not agree.
You can only do this with square matrices:

P~ 2
ans = 2x2
81 42
48 57
P "4
ans = 2x2
8577 5796
6624 5265

What if the array elements are the powers that you wish to raise a scalar to, say we want to raise the
number 4 to the power of elements in matrix K .

4 .~ K

ans = 2x4
0.0004 0.0256 0.4096 0.0064
0.0000 0.0001 0.4096 1.6384

You cannot raise a matrix to a matrix:
K ~ P % Wrong
What if you want to multiply the square root of each element in array K by the log,, of each

corresponding element in array L:

sqrt(K) .* logle(L)

ans = 2x4
0.3010 1.3979 3.0140 1.5642
-3.3420 0 1.4747 -Inf

In linear algebra courses, you learnt of the inverse of a matrix. MATLAB has a special inverse
function called inv. One can compute the inverse of a matrix only if it is square.

Page 22 of 31

This would not work:

inv (K)
inv (L)

But this does:
inv(P)
ans = 2x2

-0.0196 0.1373
0.1569 -0.0980

A very useful command is the sum command. It sums all the values in a vector, or if the input is a
matrix, it sums all the values in each column.

sum([7 8 9 5 9])

ans = 29
sum(K)
ans = 1x4
-5 4 12 10

Another useful command is the prod command. It multiplies all the values in a vector, or if the input
is a matrix, it multiplies all the values in each column.

prod([7 8 9 5 1])

ans = 2520
prod(K)
ans = 1x4
-6 0 36 21

Page 23 of 31

Vector and Matrix Logical Operations

Like all other programming languages, MATLAB supports logical and relational operators. We list
them in the following table.

Logical and Relational Operators

== Relational operator: equal to.

~= Relational operator: not equal to.

< Relational operator: less than.

<= Relational operator: less than or equal to.

> Relational operator: greater than,

>= Relational operator: greater than or equal to.
ke Logical operator: AND.

I Logical operator: OR.

~ Logical operator: NOT.

XOIr Logical operator: EXCLUSIVE OR.

When you use these operations, the output is either 0 (false) or 1 (true). These are not numeric 0 or
1, but logical values. In the same way, if we compare matrices using relational operators, the output
matrix of 0s and 1s is not numeric, but logical.

These operators work on an element-by-element basis.

o 1463 L_25178
T -6067 T -1440

K=[1J4J653;_6)656J7]

Again, suppose we have:

K = 2x4
1 4 6 3
-6 0 6 7

L =1[2, 5, 17, 8; -1, 4, 4, 0]

L = 2x4
2 5 17 8
-1 4 4 0

Page 24 of 31

One can check if each element in K is less than each corresponding element in L by writing:

Check for the type (class) of the resulting matrix by typing:

whos R
Name Size Bytes Class Attributes
R 2x4 8 logical

You can extract the numbers that meet a specific criterion using relational operators easily. For
example, to store the numbers that are less than 5 in array K in a new matrix, simply write:

Q = K(K < 5)
Q = 5x1

1

-6

4

0

3

The step K < 5 first compares each element in K if it is less than five or not and it returns a logical
array of 0’s and 1’s. This array is passed to K () which retrieves the corresponding elements for each
one that appears in the logical array.

If you want to retrieve the linear index of the elements that are less than 5 in array K, use the find
function:

find(K < 5)

ans = 5x1

NP wNBR

Page 25 of 31

The step K < 5 first compares each element in K if it is less than five or not and it returns a logical
array of 0's and 1’s. This array is passed to the find function which retrieves the linear index for
each one that appears in the logical array.

Multidimensional Matrices

3D matrices consist of pages of 2D matrices. Suppose one has:

=B el el

and that we wish to store them as a 3D matrix of three pages as follows:

One can construct a 3D matrix by first storing the 2D matrices, then appending them:

A =[5, 7; 8, 1]

A = 2x2
5 7
8 1

B =1[1, 4; 7, 1]

B = 2x2
1 4
7 1

C=1[0, 9; 4, 3]

C = 2x2
0 9
4 3

A(:, :, 2) =B

Page 26 of 31

>
~
o
o
[ay
~
|

5 7
8 1

A(:,:,2) =
1 4
7 1

>
—~
o
o
=
~
I

5 7
8 1
A(:,:,2) =
1 4
7 1
A(:,:,3) =
0 9
4 3

The previous commands append the second array C to the 2D array of A and B expanding the 3D
array.

Addressing 3D matrices is simple. As before, using subscript addressing, define the row and
column location in this respective order, then finally specify the page.

For example, to retrieve the number 9 on the third page:

A(1,2,3)
ans = 9

To get the whole second page:

A(:, @, 2)
ans = 2x2
1 4
7 1

Page 27 of 31

Data Import and Pre-processing

MATLAB has extremely powerful tools to import and export data whether it is text, spreadsheets,
audio, video, images, or data stored in special scientific formats. In this experiment, we will focus on
local MATLAB files (.mat), text files (.txt, .csv), and spreadsheets (.x1s, .x1lsx).

Loading and Storing MATLAB Variables

You can save all your workspace variables that you have created in a MATLAB session into a
special file with the extension .mat. You can load these variables again at the start of your next
session and start from where you last stopped. This is done through the simple save and load
commands. You must specify a file name (as a string or character array), and optionally followed by
the names of the variables you want to save/load. If you do not specify any variables, the commands
will save or load ALL variables.

save("exp3_all variables.mat")
save('exp3_some_variables.mat', "s1", "s2", "s3")

But where are your variables stored? The variables are stored in the current working path. You can
see the working path right under the ribbon (and you can change it from there too). Alternatively, you
can write the "print working directory" command:

pwd
ans = 'D:\Google Drive\UJ-Courses\CPE213-Numerical Analysis\Experiments'

To load your MATLAB work session variables, use the load command which has an identical
syntax.

load("exp3_all variables.mat")
load('exp3_some_variables.mat', "s1", "s2", "s3")

Using the Interactive Import Tool

Many times, numeric data is stored in textfiles or Excel spreadsheets. You can use MATLAB
commands that we introduced in the previous section. However, if you are working with one or two
files, then you can use MATLAB's Import Data tool to import data into MATLAB's workspace using
a GUI tool.

1.You can access the tool from the Home ribbon, then Import tool.

2.A simple Open File window will pop out, choose the file you want to import (.txt, .csv.
.x1sx, ... etc). There are different options for Spreadsheets and Text Files

3.A new Import screen opens where you select the import settings. Basically, the settings are
identical, except for text files, you get the extra option to choose the delimiter that splits the
data into columns.

Page 28 of 31

Importing Spreadsheets using the GUI tool

1.By default, it selects the entire range of the spreadsheets’ cells. You can change the range to
import a subset of this range.

2.Specify the row number that holds the text data (e.g., Column headings). This helps
MATLAB exclude it if you are importing it into a numeric array.

3. Always make sure to import your data into a Numeric matrix, or a String Array if you want
to import the data as text.

4.Choose the import behaviour if your input data has problems, say if it has empty cells, or
characters instead of numbers. You can replace these values with NaN or write any other
value you want, or you can exclude the rows or columns that has these erroneous cells. It all
depends on your application and what you want to do.

5.0nce you are done, click Import Selection, you can either simply save the data or generate
the commands that import the data.

PLOTS LIVE EDITOR INSERT

E]L IL__E}I Ell:ll:l 9 [5] Find Files & E Uz, New Variable E.;% L& Analyze Code ﬁj E

F_}Open Variable = é;} Run and Time

Mew Mew MNew Open [z compare Import Save Favarites Simulink = Layo
Script Live Script = - Data orkspace @ Clear Workspace = - |## Clear Commands -
FILE VARIABLE CODE SIMULINK
&
IMPORT VIEW
Dutput Type: il unimportable cells with JgilER] -+
Range: |A2:D7 - v
] Table - |
ariable Names Row: |1 = T Tabl Exclude rows with Blanks with p
able - | \Selection ~
EJ Column vectars Fxclude columns with RS
SELECTION /
- - Impert Data
[Exp03lsx | E Nu.merlc Matrix
— Bt String Array Generate Live Script
A B Ckl Cell Array .
Exp03 Generate Script
Gender Age BMI Height Generate Function
MNumber *MNumber ~¥Number ~MNumber ~
1| Gender Age EMI Height
2 1 28 23 182
3 0 43 18 161
4 0 34 22 157
5 0 23 24 163
B 1 23 27 167]
7 1 78 24 179

Importing Text Files using the GUI Tool

1.By default, the tool will try to find the delimiter (space, tab, comma ... etc) that best separates
the text file into columns.

2.You can select the entire range of the data, or you can change the range to import a subset
of this range.

3.Specify the row number that holds the text data (e.g., Column headings). This helps
MATLAB exclude it if you are importing it into a numeric array.

4. Always make sure to import your data into a Numeric matrix, or a String Array if you want
to import the data as text.

Page 29 of 31

5.Choose the import behaviour if your input data has problems, say if it has empty cells, or
characters instead of numbers. You can replace these values with NaN or write any other
value you want, or you can exclude the rows or columns that has these erroneous cells. It all
depends on your application and what you want to do.

6.0nce you are done, click Import Selection, you can either simply save the data or generate
the commands that import the data.

PLOTS LIVE EDITOR INSERT

E}L I{::I | [Find Files & E [z, Mew Variable C{? L& Analyze Code @ @ (G} Preferences E% @ ;[i

@ Open Variable ¥

New New New Open [zl Compare Import Save Favorites &) HEperiimE Simulink ~ Layout setpath Add-Ons Help -
Script Live Script ~ Data |Workspace @ Clear Workspace ~ = |## Clear Commands ~ + il paraltel = ~ -

FILE VARIABLE CODE SIMULINK ENVIRONMENT R
&, Import - D:\Google Drive - drsuyyagh\U) - Courses\CPE2xx - Numerical Analysis\Live Script Experiments\PNA - Instructor Live Scripts\Exp03.txt - O

IMPORT

O Delimited

Ge BEl2eB80E§

[Replace ¥ unimportable cells with * Nal -+ @

Column delimiters:

Delimiter -

Output Type:
A a—
ariable Names Row: |1 o [Table

- - Import
T ————— o) Selection ™
DELIMITERS SELECTION % Column vectors TTTTIPORTReTE CETrS IMPORT
MNumeric Matrix
Expl3.txt —
| Bxp l =tr) String Array
A B c D E F Cell Array y H
Exp03
VarName1l VarName2 VarName3 VarNamed4 VarName3> VarName6 VarName7 VarName8
Mumber Number *Mumber *Number ~Number ~*Number ~Number ~Number ~

110.0975 0.1576 0.1419 0.6557 0.7577 0.7060 0.8235 04387

2|0.2785 0.9706 04218 0.0357 0.7431 0.0318 0.6948 0.3816

3 0.5469 09572 09157 0.8491 03922 0.2769 0317 0.7655

4 J0.9575 04854 0.7922 0.9340 0.6555 0.0462 0.9502 0.7952

5 |0.9649 0.3003 0.9593 0.6787 0.1712 0.0971 0.0344 0.1869

It is worth noting that the GUI import tool can be used to import many other data formats such as
audio and video files, different types of images and other datafiles.

Page 30 of 31

Experiment version 1.2

Original Experiment October 5th, 2020
Last Updated March 11th, 2022

Dr. Ashraf Suyyagh - All Rights Reserved

Revision History

Ver. 1.2

Moved the Data Import and Pre-processing Part from the old Fundamentals III
into this experiment

Ver. 1.1

Corrected formatting and spelling mistakes.

Corrected the equation that computes the number of generated elements in a
vector by added the floor symbol.

Added more info about the display format of the lLogspace command.

Added more clarification on retrieving values or indices using logical
operations.

Added more clarification to appending 2D arrays to form 3D arrays.

Page 31 of 31

University of Jordan
School of Engineering and Technology
Department of Computer Engineering
Practical Numerical Analysis (CPE313)
Experiment 3 - Scripts, Functions, and Control Flow Operations

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 3 - Scripts, Functions, and Control FIOw Operationsccccvvvvveeeeiiiiiiiiiieeee e esveneeeens 1
S Y03] £SO 1
SCIIPt CreationN QNGO ACCESS ...uuuuuuuuiiiiiiiiiuueet e ——————————————————————————a——aa—aaaaaaaansaaannnssnnsannnnnnnnnnnnns 1
VNG S I D S e 3
FUNCLIONS aNd SUDTUNCLIONS.ciiiiiiiii ittt et e e e e e e e e e e e e nbeeeeeanes 5
DefiniNg MATLAB FUNCHONS.iiiiiiiiiiiieiiii ettt ettt et e ettt et e eeeaeeeeeeeeeeeeeeeeeeeeeeeeseesesneneeees 6
Creating MATLAB FUNCLIONScoviiiiiiiiiiiiiiieiieeeeeeee et e et e e e e e e aeeeeeeeeeeeeesesseseeaseeaesasesssssesesesennssenees 6
Creating MATLAB SUDTUNCHONS ...ttt e e e e e e e e e e e e e e e e e e nnnnnnneeeeas 8
GIODAI VATTADIES. ...ttt e e e e e et e e e nbr e e e e anneee s 8
Persistent VariabIESoooiiiiii et ————— 9
Function Arguments Validation............ceeieeiiiiiiiiiii e e e e e e e r e e e e e s s nnnrnaneeeeeeeans 10
Function Handles and ANONYMOUS FUNCLIONS..........ccuiiiiiiiiiiee e e e ceiieeeee e e e e s ee e e e e e e snnnnnneeeeeeeeens 13
CONIOL FIOW ... 14
(©70] a0 [11[o] 1 F= 1L PP RRPP 14
SWILCN STATEIMENTcoiiiiiii ettt e ek e e e e et b e e e e anbe e e e e nneeas 16
10 o 01 USRI 17
[IoTo] oIV /=T ot (011 2= (o] o [F P PUPPPPPPPPP 18
Scripts

In the past few experiments, we have used MATLAB exclusively in interactive mode. You interacted
with MATLAB by writing instructions inside the command window and seeing results in the same
window. While interactive mode works well when one needs to perform quick calculations, for larger
codes this might not be feasible. We resort to MATLAB scripts instead to write, store, debug, and
execute longer codes with specific purposes much like any other programming language. Scripts
save you time by allowing you to change a command, modify or fix your code in place rather than
type everything every over and over in the command window.

Script Creation and Access

To create a MATLAB script file, simple go to New --> Script File and an untitled script will
show up immediately in MATLAB workspace. When you save the script file, you must take

Page 1 of 20

precautions in naming your script to avoid collisions. MATLAB scripts have an extension of
'filename.m'. The rules for naming MATLAB script files are:

e The name of a script file must begin with a letter, and may include digits and the underscore
character, up to 31 characters.

¢ Do not give a script file the same name as a variable, MATLAB command, or MATLAB
function or other script files.

Previously, we have used the exist command to check if a variable exists in the workspace or not.
We can use the exist command again to check if the name we want to choose for our script is in
no conflict with variables, other files, commands, etc. If you type exist with a potential script name,
it must return zero before proceeding. A non-zero value means your suggested script name is
already in use for something else as given in the list below:

+ 0 — name does not exist or cannot be found for other reasons. For example, if name exists in a restricted folder to which MATLAB® does not have access, exist retums 0
+ 1 —naneis a variable in the workspace.

2 —nanes a file with extension .m, .mlx, or .mlapp, or name is the name of a file with a non-registered file extension (.mat, . fig, . txt).

+ J—name is a MEX-file on your MATLAB search path.

+ 4— nane s a loaded Simulink® model or a Simulink model or library file on your MATLAB search path.

+ 5 — nane s a built-n MATLAB function. This does not include classes.

+ 6 —nane is a P-code file on your MATLAB search path.

+ T —nameis a folder.

* B —nameis a class. (exist returns 0 for Java classes if you start MATLAB with the -nojvm option.)

When you save the script, you can save it anywhere but when you run it, make sure that the script is
in the current path. Remember you can use the function pwd to print the current path. You can save
your scripts in other folders or subdirectories, but in this case, you must add these folders to the path
using the command addpath.

For example, to create a subdirectory in the current directory named 'myMATLAB' and add it to the
path, one can write:

mkdir(' 'myMATLAB")
If the directory already exists, it will give “Warning: Directory already exists.”

addpath('myMATLAB")

To check if your newly created folder (or any folder for that matter) is in MATLAB's path, simply
check by using the command path:

path

MATLABPATH
D:\Google Drive - drsuyyagh\UJ - Courses\CPE2xx - Numerical Analysis\Live Script
Experiments\PNA - Instructor Live Scripts\myMATLAB
C:\Users\drsuyyagh\Documents\MATLAB
C:\Users\drsuyyagh\AppData\Local\Temp\Editor_vxdxq
C:\Program Files\MATLAB\R2020a\toolbox\matlab\capabilities
C:\Program Files\MATLAB\R2020a\toolbox\matlab\datafun

Page 2 of 20

C:\Program Files\MATLAB\R2020a\toolbox\matlab\datatypes
C:\Program Files\MATLAB\R2020a\toolbox\matlab\elfun

., etc.
Now let us create a script named 'firstScript.m' and save it inside 'myMATLAB' folder. Inside

the file, write the command:
disp('This is my first script')
This is my first script
To run the script, simply call it by its name. The content of the script will execute as long as you have

added its location to MATLAB's path.

firstScript

Writing Scripts
Inside your script, write your sequence of commands as if you are writing them using the interactive

mode inside the command window. However, we usually prefer to do the following:
¢ use the semicolon (;) to suppress the output of commands. We are usually interested in the
final result, not the output of the intermediate steps.
¢ Use the % to insert comments to explain the inputs, outputs, functionality, etc.

Sometimes, you need to ask the user for input; you can use the input command to prompt users for

input through the command window, and specify whether the required input is to be stored as a
numeric value or a string. Don't forget to suppress the statements by a semicolon at the end.

's') % Add 's' at the end of the input

X = input ('Please Enter your Name: ',

command to specify a string input

x = "Ashraf’
y = input ('Please Enter your Age: ') % By default, inputs accepts numerical
values

y = 35
To display text messages, or the value of variables to the user on the command window, as usual,

use the disp command:

disp('We are becoming good users of MATLAB!')

We are becoming good users of MATLAB!
Let us update our firstScript.m file that we have created inside the myMATLAB folder by doing

something fun!

Page 3 of 20

Suppose we want to plot the following equations on the Cartesian Coordinate system. Initially, we
want to generate the (x,y) pairs using this equation in order to plot it, how would we approach this
problem?

/ 5
- cos (t) - t
sin (t):||e —2cos (4t) - | sin [—
X (1 (41 \ (12) /
54

Y cos (t) 'f. t
cos(t):]e —2cos (4t) — | sin [—
(1) (40 - | (12);

1.In this example. we need to generate the values of x, and the associated values of y. Both x
and y equations are given in terms of t. If you use one value for t, this means you will only
get one value for x, and another one for y, so you end up with only one pair of (x,y), which
is basically a dot!

2.We conclude that we need to generate numerous pairs of (x,y) such that we end up with a
meaningful plot. To do so, we need to generate numerous values of t to substitute in the
equations above.

3.We already learnt that we can generate a vector of values either using the colon expression
or the 1inspace command. But we need to know where to stop? In our case, we don't really
know how many pairs are enough, so lets ask the user to provide the end point.

4. The following sequence of MATLAB commands corresponds to the steps mentioned above.
Copy/Paste this sequence into firstScript.m file after deleting its old content.

endpoint = input('Please provide a value of t: ");

t = 0:0.01l:endpoint;

x = sin(t).* (exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).75);
y = cos(t).*(exp(cos(t)) — 2.*cos(4*t) - (sin(t/12)).75);
plot(x, y)

Notice that we have suppressed the output of each step and only visualized the plot. To execute the
script, simply write its name. As long as the script location can be found in MATLAB's path, MATLAB
will find it and run it. Run the script a couple of times times. Try the value 100 and 10 for t.

firstScript

Page 4 of 20

Functions and Subfunctions

In MATLAB, aside from the ability to write scripts, you can write another type of files called function
files. A function file is a special type of an .m file that contains one primary function and the
possibility of having one or more subfunctions. Subfunctions are optional. You can use them if you
have a very large primary function that you wish to divide into smaller modular functions. These are
some important rules when writing function files:

1.The primary function is always the first function in your file.
2.Your filename and primary function name must be identical.
3.Valid function names begin with an alphabetic character, and can contain letters, numbers,

or underscores.

Page 5 of 20

4.You can call the function from the command window or any other .m file, as long as the file
is in MATLAB's path. Use addpath to add the folder containing the function file to MATLAB's
path.

5.You can only call the primary function. You cannot call any of the subfunctions. They are not
visible outside of the file. Only the main function can access them.

6. Any function can have zero or more inputs, and zero or more outputs.

7. All variables defined in the primary function or the subfunctions are local to that function.
You cannot access them from outside and they get erased once the function finishes
execution; unless it is the output variable!

8.In MATLAB 2016b or later, you can place functions at the end of a script file, but in this
course, we will not cover this.

Defining MATLAB Functions
A MATLAB function has the following definition:
function [yl,...,yN] = myfun(xl,...,xM)
end
"It declares a function named myfun that accepts inputs x1, . .., xM and returns outputs y1,...,yN.

This declaration statement must be the first executable line of the function”. You must name the file
as myfun.m

Note that the output variables are enclosed in square brackets. The input variables must be
enclosed with parentheses.

The following are valid function definitions:

Function definition filename Qutputs Inputs
function farea] - sqaredreatstde
Finction olime. — boxloL(height, wideh, Langthy| POXVol:n | volume height, width, length
function [area, circumference] = circle(radius) circle.m :{iiﬂmference radius
function sqplot(side) sgplot.m side

Creating MATLAB Functions

To create a MATLAB function, simply go to New --> Function and it will create a template that you
can edit according to your requirements. The template will look like this:

[outputArgl, outputArg2] = untitled3 (inputArgl, inputArg2)

outputArgl = inputArgl;
outputArg2 inputArg2;

Page 6 of 20

Start by first changing the function name from untitled to a meaningful name to call your function
by. Don't forget to save your filename exactly as the function name. This first function is your primary

function. Don't forget to add the folder this file exists in to MATLAB' path by using the command
addpath.

Now, edit your input and output arguments and the body of your function as you need. For example,
create a function called zedSquares that takes in the arguments x and y , and returns the sum of
their squares in z. Always try to write meaningful comments detailing what the expected input is,
and what does the function do and its output. Your function should look like this:

[z] = zedSquares (x, V)
z = X2 + y*2;

Try calling your function as follows:

z = zedSquares(m, n)

z = 130

What if the inputs to the function zedSquares were vectors or matrices? Our expectation is that it
should perform the operation element-wise. But the function call will fail. Try it.

m= [7, 5, 9, 0, 11;
n [2, 2, 38, 61;
z = zedSquares (m, n)

The reason behind this is we did not write our function body to be generic; that is, to take in the
possibility that the user might enter a scalar, a vector, or a matrix. A simple fix would be to use
element-wise operators. Update and save the function zedSquares with the following body:

z = xX."2 + y."2;
then run the code below again:
m=1[7, 5,9, 0, 1];

n=1_[2,2,38,6];
z = zedSquares(m, n)

N
I

53 29 90 64 37

Page 7 of 20

Creating MATLAB Subfunctions

MATLAB subfunctions are functions that are written after the primary function. They can't be called
outside the file, and only called by the primary function or each other.

Let us create a new function file and call it circLeParameters.m inside the folder myMATLAB.
Copy the following code inside the newly created file:

[area,circumference] = circleParameters (radius)
area = computeArea (radius) ;
circumference = computeCircumference (radius) ;
a = computeArea (r)
a = pi.*r."2;
c = computeCircumference (r)
c = 2%pi.*r;

In the above code, the primary function takes the radius as an input, then calls the subfunctions
computeArea and computeCircumference. Each one of them computes its respective values
which are stored eventually into area and circumference; the final outputs of the primary functions.

Note that when you call the primary function circleParameters, don't forget to store its output or
otherwise you won't make good use of it in future operations.

radii = [4, 5, 9];
[areas, circumferences] = circleParameters(radii)

areas =
50.2655 78.5398 254.4690
circumferences =
25.1327 31.4159 56.5487

Global Variables

"Ordinarily, each MATLAB function has its own local variables, which are separate from those of
other functions and from those of the base workspace. However, if several functions all declare a
particular variable name as global, then they all share a single copy of that variable. Any change of
value to that variable, in any function, is visible to all the functions that declare it as global."

Let us create a new function file and call it testGlobals.m inside the folder myMATLAB. Copy the
following code inside the newly created file:

testGlobals (x, V)
z
z = 10;
disp(z)
innerl (y);
disp(z)
inner2 (x);

Page 8 of 20

disp(z)

innerl (y)
z

zZ =z - V;
z = inner2 (x)
z = 5 + x;

Once you are done, call the primary function testGlobals:

testGlobals (2, 3)
10
7

7

We observe that the variable z is a global variable in only the primary function and inner1 function,
but NOT inner2 function where it is a local variable. So initially, z has a value of 10. When we call
inneri, the value of z changes globally to become 7. However, when we call inner2, there z is a
local variable, it becomes 4 and the function returns with the value 4, but since it is not stored
anywhere, its value is lost. Global z value is not affected and remains 7.

Persistent Variables

"Persistent variables are local to the function in which they are declared, yet their values are
retained in memory between calls to the function". That is, when the function finishes execution, it
does not clear the variable. Further, you cannot change the value of the persistent variable from
MATLAB's command line or from within other functions. By default, persistent variables are
initialized to an empty vector.

Let us create a new function file and call it testPersistent.m inside the folder myMATLAB. Copy
the following code inside the newly created file:

testPersistent ()
n
isempty (n)
n = 0;
disp (n)
n = n+l;
disp (n)

Page 9 of 20

Once you are done, call the primary function testPersistent few times:

testPersistent
0

1

testPersistent

2

testPersistent

3

testPersistent
4

Once declared, the persistent variable n is an empty vector. The if statement tests if n is empty and
if so initializes it to 0, so it becomes a scalar with the value 0. Then, it gets incremented by 1 and the
function exits. Upon the next call, the persistent variable n was not cleared, and it still retains its
previous value of 1, so the function increments it to 2. In the third call, its value is updated to 3 and
S0 on.

Function Arguments Validation

In many times, you want to make sure that your function accepts numeric values only (no strings,
NaN, or Inf), or you want to make sure that it accepts vectors but not arrays, or accepts arrays of
certain fixed dimensions, or that the values passed satisfy a certain criteria. You can make these
validation checks at the beginning of your function using the arguments and end keywords. Function
validation has the following syntax:

function myFunction(inputArg)

arguments

dten

L]

4
|

inputf-‘-_r‘g ;':f.='-"."."- I, dim £yaan) ClassName ,_.‘l:"-"":, . ._.‘ = D'EfHULtVHLUE

end Size Class Functions

% Function code

end
After you define your function, and before its main body you can add the checks necessary using the

arguments keyword. The function argument declaration can include any of these kinds of
restrictions:

Page 10 of 20

e Size: The length of each dimension, enclosed in parentheses. For example (1, 1) means it
accepts scalars, (1, :) can accept either vertical or horizontal vectors, (3:0) means the first

dimension must be 3, and second dimension can be any value.
e Class: can be char, double, string, etc.

¢ Validation Functions: A comma-separated list of validation functions, enclosed in curly

braces. You can choose your functions from the list below:

Name

mustBePositive(value)
mustBeMonpositive(value)
mustBeFinite(value)
mustBeMonNan (value)
mustBeMonnegative(value)
mustBeNegative(value)
mustBeMonzero(value)
mustBeGreaterThan(value,c)
mustBelessThan(value,c)
mustBeGreaterThanOrEqual (value,c)
mustBelessThanOrEqual(value,c)
mustBeMonempty (value)
mustBeMonsparse(value)
mustBeMumeric{value)
mustBeMumericOrLogical (value)
mustBeReal(value)

mustBeInteger{value)

Meaning

value > B

value <= @

value has no Nal and no Inf elements.
value has no NaN elements.
value »= @

value < @

value ~= @

value » ¢

value < ¢

value »= ¢

value <= ¢
value is not empty.

value has no sparse elements.
value is numeric.

value is numeric or logical.
value has no imaginary part

value == floor(value)

mustBeMember (value,s) value is an exact match for 8 member of 5.

Let us write a function that has three arguments a, b and c. We wish to restrict a to be a positive
scalar, b to be a vector with no NaN or Inf values, and c to be an array whose elements are larger
than 10. All variables must be of course numeric.

Let us create a new function file and call it testValidation.m inside the folder myMATLAB. Copy
the following code inside the newly created file:

function testValidation (a, b, c¢)
arguments
a (1, 1) double {mustBeNumeric, mustBePositive }
b (1,:) double {mustBeNumeric, mustBeFinite}
c (:,:) double {mustBeNumeric, mustBeGreaterThan(c, 10)}
end

disp (a)

disp (b)

disp (c)
end

Page 11 of 20

To test how functions with arguments validation works, let us try few examples:

a=17;

b = [12, 14, 17];

c = [12, 15,; 19, 11];
testValidation (a, b, c)

7
12 14 17

12 15
19 11

Suppose we change the value of a to -7:

a = -7;

b [12, 14, 171;

c [12, 15,; 19, 111;
testValidation (a, b, c)

You will get an error telling you the restriction that you have imposed:

Error using testValidation

Invalid argument at position 1. Value must be positive.

Similarly, if we change the value of b to have an Inf:

a = "17;

b [12, 14, Inf]l;

c [12, 15,; 19, 111;
testValidation (a, b, c)

You will get an error telling you the restriction that you have imposed:

Error using testValidation
Invalid argument at position 2. Value must be finite.

And finally, if we change the value of 11 into 9 in variable c:
a = 17;
b = [12, 14, 17];
c = [12, 15,; 19, 9];
testValidation (a, b, c)
You will get an error telling you the restriction that you have imposed:

Error using testValidation

Invalid argument at position 3. Value must be greater than 10.

Page 12 of 20

Function Handles and Anonymous Functions

Function handles are created by simply preceding the function name by the @ sign. So, the handle
becomes like a pointer to that function which allows you to pass the function as an argument to other
functions or create what we call a cell array of function handles.

A cell array is special type of MATLAB arrays that can be used to store elements of different types
together, unlike numeric or string arrays, they can contain numbers, strings, or function handles, etc.
We can create a cell array of trigopnometric function handles as follows:

trigfun = {@sin, @cos, @tan}

trigfun =
1 2 3

1 1x1 function_handle 1x1 function_handle 1x1 function_handle

Note that we use curly brackets instead of square brackets to both create and call cell array
elements.

We can use function handles to create anonymous functions according to this syntax:
functionName = @ (input arguments) body

To illustrate:

sqr = @(X) x.”2;

In this example, sqr is the function name, @ is the function handle which specifies that it accepts one
input x, followed by the body of the anonymous function.

To try it out:

x = 1:10;
sqr(x)

ans =
1 4 9 16 25 36 49 64 81 100

You can create anonymous functions with more than one variable:

myfunction = @(x,y) (X.”2 + y.”2 + x.*y);

x = 1:10;
y = 2:2:20;
myfunction(x,y)
ans =
7 28 63 112 175 252 343 448 567 700

Page 13 of 20

Control Flow

In this section, we assume that you are familiar with all the control structures from previous
programming courses. So, we will simply introduce their syntax and any worthy notes.

Conditionals

The syntax for the if, elseif, and else statements looks like this:

If elseif, else

Execute statements if condition is true

Syntax

if expression
statements
elseif expression
statements
else
statements
end

where the elseif, and else parts are optional and depend on your application. The expression of
the if statement can be written with or without parenthesis. But we advise that once you start using
compound logical expressions using the (&, ||, !) that you enclose the expressions in
parenthesis to improve readability and avoid logical errors. Review the following examples below.
We advise you to refer to Experiment 02 - MATLAB Fundamentals Il - Vector and Matrix Logical
Operations Section to review the logical operators available for use in MATLAB.

% Example: One-Way If Statement
x = 10;
X ~= 0
disp('Nonzero value')

Nonzero value
% Example: Two-Way If Statement
X = -9;

X >0

disp('Positive value')

disp('Non-Positive Value')

Non-Positive Value

Page 14 of 20

% Example: Nested If Statements

X = -10;
X >0
disp('Positive value')
X < 0
disp('Negative Value')
X ==

disp('Zero Value')

disp('Fail'")

Negative Value

% Example: Two-Way If Statement with Compound Expressions
X = -10;

(x >0) [| (x <o)

disp('Non-Zero value')

disp('Zero Value')

Non-Zero value

But, what if the input to the if statement was a vector or array instead of a scalar? Suppose we
have this case:

x = [5, @ , -5];
X >0
disp('Positive value')
X < 0
disp('Negative Value')
X ==
disp('Zero Value')

disp('Fail')

Fail

The above code will not go through the elements of x element-by-element. It will treat the vector or
array as one unit. Either all of its elements satisfy one of the conditions or not. Here, each element
in x satisfies a different case, so the vector as one unit won't match any case except the 'Fail'. In
contrast, in the code below, all the elements in x are positive, so the vector x as one unit is positive
and thus it matches the first case.

Page 15 of 20

x = [8, 24 , 55];
X > 0
disp('Positive value')
X < 0
disp('Negative Value')
X ==
disp('Zero Value')

disp('Fail")

Positive value
Switch Statement

The switch statement is similar to the one you have been introduced to before in C++ or Java. It has
the following syntax:

switch, case, otherwise

Execute one of several groups of statements

Syntax

switch switch expression

case case_expression
statements

case case_expression
statements

otherwise
statements
end

The major difference is that in MATLAB, you do NOT need a break statement between each case
statement. Each sentence will end once the next case or otherwise statement begins. If no value
matches any of the cases, then MATLAB will run the body of the otherwise statement. We will try
the example below with the input -1

n = input('Enter one of the following numbers [-1, @, 1]: ");
n
-1
disp('negative one')
0
disp('zero")
1
disp('positive one')

disp('other value')

negative one

Page 16 of 20

You can also compare characters or strings inside a MATLAB switch statement. We will try the

example below with the input g:

Gender = input('Enter the gender of the newborn baby [b/g]:

switch Gender

case 'b’

disp('Congratulations! It is a baby boy!")
case 'g'

disp('Congratulations! It is a baby girl!"')
otherwise

disp('Alien baby?')
end

Congratulations! It is a baby girl!
Loops
The for loop is quite simple in MATLAB. It has the following syntax:

for

for loop to repeat specified number of times

Syntax

for index = values
statements
end

for v =1.0:-0.2:0.0
disp(v)
end

0.8000
0.6000
0.4000

0.2000

's');

Page 17 of 20

v =1[15817]
disp(v)

1
5
8
17

The while loop on the other hand keeps executing until the condition it is checking against becomes
false. You must make sure the variable is updated inside the while loop so that you will not end with
an infinite loop. The while loop has the following syntax:

while

while loop to repeat when condition is true

For example, this is a while loop that computes the factorial of number n similar to the function
factorial. We will try the example below with the input 5.

input('Enter a value for n less than 10: ');

=}
1]

f = n;
n>1
n =n-1;
f = f*n;
disp(['n! = ' num2str(f)])
n! = 120

Remember that you can use the break keyword to exit the while or for 1loops at any time. Also, you
can use the continue keyword, to only skip the current iteration and start the next one without fully
exiting the loop.

Loop Vectorization

We often forget that MATLAB has been designed from the ground up to work easily with vectors or
matrices. Anyone coming from C++ or Java programming background might use old techniques in
problems MATLAB can handle quickly using its syntax and features.

Page 18 of 20

Suppose you want to compute the sin of 1001 values ranging from 0 to 10 radian. You might
naturally go with your first intuition and write the code as follows:

i=0;
= zeros (1,1001);
t = 0:0.01:10
i=1 +1;

y(i) = sin(t);

Whereas you forgot that MATLAB can readily do the same operation as:

0:0.01:10;
sin(t);

< t
]

The beauty of MATLAB is that it can work on entire vectors or arrays without having to loop over
their elements one-by-one. The second code is much faster to run and is the only way we acceptin
this course. Vectorize whenever possible. Another example is if you have the following array and
you want to find all the elements larger than or equal to zero.

A=1T[8e0o, -1, 4;
-14, 25, 9;
-34, 49, 64];

The wrong way to do it in MATLAB is:

[m, n] = size(A);
C = zeros([m,n]);

K = 1:m*n
A(K) >=0
C(K) = A(K);
disp(C)
) 0 4
) 25 9

(4] 49 64

Whereas you could have easily done the same thing by:

Page 19 of 20

C(C <o) =0
C =
0 0
0 25
0 49

NeJ

Dr.

Experiment version 1.00
Last Updated November 10th, 2020
Ashraf Suyyagh - All Rights Reserved

Page 20 of 20

Quick Review on Plotting Tiled Layouts

Suppose we want to plot the following signals in a tiled layout as shown in the figure below:

10"
17 &) 251 25
A
1 I
05 \ fo 2 |
|I II i
\ \| 15 '
0 \ \ | 2f /
1 ! f)
\ / | 1 | /
05 I'. | | /
05 y
! e /
‘ n 15F
0 5 10 0 5 10
z 1
'_\ - _'_\
1 \ /
N ! %
\ / A
0 \.\ S \ 05 |
N\ f’r \ f
1
-1 AN / \\ [
e . |
|
|
2 0
0 a 4 6 B 10 0

Step 1: Identify the smallest plot tile. In this case either one of the first two plots is the smallest.

10"
1 A 25> 25
[
1
5 \ 2 |
1 !
1 1 1]
\ \ 15 |
0 \ \ 2 /
1 ! Iy
| II i ri
|I \ /
)
\ 05 / /
'.\ 1 ”/ _.-"'
‘ n __, 15F
[1] 5 10 0 7] 10
z 1
'\.\ - "\.\
1 \ / \
N ! %
A Vi AN
[1} \.\ / N 05f |
\\ 'Hr’r kY |
1
-1 N / \‘ |
M \\ |
T |
| i
- Q
Q 2 4 & 8 10 L])

Step 2: Use the smallest tile as a scale to measure the other tiles:

2=
r. \\ b5 b5
h 5 \ / \ =
| |
| \ 5
0 \ I|I 2r
III I| 1 I
1
bs \ / . /
=1 "\ o == 1.5
0 5 10 0 5 10
2 Wk
S
1
0

ny

104
T .5 .5
I|
0.5 2
5
[i] 2r
1 i)
5 D5 /
¥ 0 = 5T
[i] [i] 10
2 s
——,
1
. |
! _ |
-2

Step 4: Use this numbering to identify the start of each plot, and the area it takes to fill this
space in the tiled layout

ey /\ b 5 b5
h 5 \ \ =

1
My e/

n - 151
0 5 1| [o 5 10
2 R
——

1
0 &5-/
: |
! |

|

| .
-2 [1]

£ 4 o kY 1] 5 10

nexttile (1)
nexttile (2)

nexttile(3, [2 1]) % Starts at 3, and takes a space of two rows, one column

nexttile (4, [1 2]) % Starts at 4, and takes a space of one row, two columns

Example Code:

x = 1:0.1:10;

yl = sin(x);

y2 = exp(x);

y3 = log(x);

y4 = sin(x)+cos (x);

t = tiledlayout (2, 3);

nexttile (1)
plot(x, yl)

nexttile (2)
plot (x, y2)

nexttile (3, [2 1])
plot(x, y3)

nexttile (4, [1, 2])
plot(x, vy4)

University of Jordan
School of Engineering and Technology
Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Experiment 4 - MATLAB Plots

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

EXPeriment 4 - MATLAB PlOLSoiiiii ittt ettt e e e e e e e e e e e e e s esnssnaeeeeeeeeeennnsnnnneeas 1
a1 oo (8 ox 1T] o HE RO P PR PPPPR 1
Simple Vector Plots 0N the Cart@SIAn AXESuuiiiiiiiiiiiiiiiiiiiieieeeeeee ettt e et e e eeeaeeeeeasaeeeeseeeeeaeeeeeeeeaees 2
Plotting a Matrix against a Vector using different Plot Commands............cccevvvviiiviiiiiiiieieeeeeeeeeeenene, 6
Plotting a Matrix against another IMALXuviiiieeiiiie e e e e e e e e snneneeeeeeeeens 11
Plotting Different Data Against @ COMIMON AXIS.......uuuiiiiiiiiiiiiiiiiiiiiieieeiieeeeeeeeeeeeeeee e e e eeeeeeaeeeeeraea—. 12
Tricky FUNCHON PIOTS. ..o 13
[To W1 =AY T pTo = XiTo] g =T o B o] 1] o L= RS 18
BT (To I (o ORI 22
PIOt CUSTOMUIZATION ...teiteee e e ettt ettt e e ettt e e e e e sttt et e e e e e e nabbe e e e e e e e e e ansnbbbeeeeaeeeeannnnbseeeaeas 26
(0f0] 0 01Tl o (o) BN o 1T T LT o PSR PPPR P 34
T I o 0] £ SRS PTPPR 35
SEONNG MATLAB FIQUIES ...ooiiiiiiiiiiiiieiee ettt ettt ettt e e e et ee e e e e e e eeeeeeeeeeeeeeaeeeeeeseseesessseseennneees 39
Summary for Creating ProfesSsional PIOtS..........c.iiii it e e e e e e e e 40
Introduction

Data visualization is important to analyse, understand, and make informed guesses or deductions
about the underlying data. In the ribbon bar, and under the 'Plots' tab, MATLAB offers a large set of
plot types. While it is easy to use these GUI plots readily, especially for one-time plots, they can be
cumbersome to use for a large number of plots. If you want to use the GUI tool, you simply select
the variables you want to plot from the Workspace window, then you click on the plot type applicable
to this type of data. You can customize the graph afterwards. But if you want to repeat these steps
for a larger number of files, the procedure will be repetitive and time-consuming. In this lab, we will
learn how to write MATLAB commands that draw plots with different options and save them in any
compatible output format. We can use the codes afterwards for any input data we want and provide
customization options far more powerful than what you can do with the GUI plots (e.g. plot animation
or stacked or tiled plots).

Page 1 of 40

Simple Vector Plots on the Cartesian Axes
Often, we need to plot functions in relation to time x(¢), y(7) or mathematical functions such as y(x)
. In this type of graphs, it is only logical to have equal-size vectors associating the two variables

together. To plot a simple sine wave from —2z to 2z, we can do the following:

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);
plot(x1, y1);

081 |

III

0.6 '
0.4 f

I

0.2r

02T
D4
D6

08T

You will notice that a figure with the title Figure 1 appears on the screen and the plot drawn on an

axes inside. Now suppose you want to add another cosine wave to the same figure, if you try:

x2 = linspace(-2*pi,2*pi);

y2 = cos(x2);
plot(x2, y2);

0.8
0.6
04

021

Page 2 of 40

You will notice that the new figure will overwrite the previous figure! In order to keep the previous

sine wave and add the cosine wave to it (superimpose the new plot over the old plot). You can
expand the plot command such that it plots both the sine wave and the cosine wave in the same

plot:

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);
y2 = cos(x1);
plot(x1, yl, x2, y2);
1 - - T 5
\ / [\ ffﬁ
0.8 | \ \
0.6 [N\ \ / M\
0.4 | ' 1 1 f f '
0.2 | ' 1 \ / f

When you have lots of functions to plot on the same figure, the previous method can get a bit
confusing (too long) or not visually appealing. Instead, we use the hold command which instructs

MATLAB to hold (keep) the previous figure while we plot another on the same canvas. You can turn

the hold on and off as suits your needs.

x1 = linspace(-2*pi,2*pi);
sin(x1);

yl =
plot(x1l, y1);

hold on
y2 = cos(x1);
plot(x1, y2);

hold off

Page 3 of 40

1 T 7T T
\ / f
08F \/ /
! f {
06 f |
\ |
0.4 [/
I|I '.I I'I
0.2r | [
ot / l\ i
\ |
0.2r . L
|
04l \ L f
II |
06} [
081 J."I /
ARV AVAVA
2 0 2 4 6 8

4

Similarly, we can use the grid command to enable or disable drawing a grid in our figure. Grids can

be useful to read the figure easily. However, you enable or disable the grid after you plot your

functions.
x1 = linspace(-2*pi,2*pi);
= sin(x1);

yl =
plot(x1l, y1);
hold on
y2 = cos(x1);
plot(x1, y2);
hold off
grid on
1 T T T 15
08| .'/ f o\ ’/ /
1 i \ i
06 | Al -
0.4 / f I.I I."I
02+ I | '
ot \ I," f
0.2} / '
04r | . ,u'll
06 \' ,I"I
080 .II'-__ f-'\ /
8 5 -4 2 0 2 4 6

Page 4 of 40

But what if you want to plot the two trigonometric functions on two separate figures instead of one
overwriting one another, or having them on the same canvas? In this case, use the figure command

to start a new canvas:

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);
plot(x1, y1);

figure
y2 = cos(x1);

plot(x1, y2);

each figure, you must do the following:

x1 = linspace(-2*pi,2*pi);

grid on
In the above example, note that the grid was only shown for the second figure but not the first! It is
important to note that all plot commands affect the most recent figure drawn, so to show the grid for

yl = sin(x1);
plot(x1, y1);
grid on
1 .
f
0.8 i
0.6 [f
0.4 f
02r |I
D | I
02}
04l
06}
08l
E
8
figure
y2 = cos(x1);

plot(x1, y2);
grid on

Page 5 of 40

02r
b |
|

08 \
\/
2

It will be extremely advantageous to be able to return to a certain figure and do some modifications.
Since all edits by default are applicable to the most recent figure drawn, we can overcome this
limitation by storing each plot canvas (figure) and its plot axes in two objects so that we can refer to

them later and modify their properties by name pairs, if needed:

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);

hl = figure;
plot(x1, yl1);

pl =
grid on
figure

y2 = cos(x1);

h2 = figure;
plot(x1, y2);

p2 =

grid on

Plotting a Matrix against a Vector using different Plot Commands
In the examples above, we have plotted a vector against another vector of equal size. MATLAB
allows plotting a vector against a matrix, or a matrix against another matrix. Plotting a vector against
a vector is simply a special case of plotting matrices against each other. As an example, suppose we
have collected the average annual precipitation from four world cities in a matrix, and we want to plot
the amount of rainfall (in mm) against each month. Matrix rainfall has the precipitation values for

Amman, Montreal, London, and Cairo (Source: Wikipedia):

Page 6 of 40

Table 1: Average Annual Precipitation (in mm)
Jan Feb Mar Apr May Jun jJul Aug Sep Oct Nov Dec

Amman 60.6 628 341 71 3.2 0 0 0 01 71 23.7 46.3
Montreal 772 627 91 22 1.2 87 89.3 41 831 913 964 38.8
London 55.2 409 416 437 494 451 445 495 491 685 59 55.2
Cairo 5 38 38 11 05 01 0 0 0 0.7 3.8 59

One condition when plotting matrices against vectors is that they must have one dimension of the
same length. It is apparent that we need to plot against the months of the year, and we must have a
value for each month. Our table satisfies this condition. MATLAB plots columns of a matrix, not its
rows, so we must transpose the matrix before plotting it. Either enter it as in Table 1 above then
transpose it or write it in transpose form.

months = 1:12;

rainfall = [60.6 77.2 55.2 5;
62.8 62.7 40.9 3.8;
34.1 9.1 41.6 3.8;
7.1 2.2 43.7 1.1;
3.2 1.2 49.4 0.5;
0 87 45.1 0.1,
) 89.3 44.5 0;
) 4.1 49.5 0;
0.1 83.1 49.1 0,
7.1 91.3 68.5 0.7;
23.7 96.4 59 3.8;
46.3 38.8 55.2 5.9];

plot(months, rainfall)

grid on

Page 7 of 40

100 T T T T T

701 N\ | ' ; L
sl —)\ | 1
50 T\ | { f 1

40 | b /T

1071

0 2 4 5] 8 10 12

However; one can note that we are trying to plot discrete time data using a continuous plot. This
might lead to false deductions; that the rainfall linearly increases or decreases between each month!
Perhaps it is better to convey this data using a better graph, for example, lets try the stairs plot:

stairs(months, rainfall)
grid on

100 T T T T T

90 S — ___J__J__i

50 7

40 7

30 T

In our case, the stairs plot is definitely an improvement over the continuous plot function, but
what if we try the stem plot?

Page 8 of 40

stem(months, rainfall)
grid on

100 . . . ; ;
90 | B ? 1
80 i 1

70 [. |

60 | 1 —

30 .
201 .

10 o p 1

It seems like the stem plot is indeed a better visual plot for our type of discrete data points.

But, can we for example plot the datapoints only? without any lines connecting them? For this type
of graph, we can use the scatter plot. Unfortunately, the scatter plot cannot handle matrices, so
we need to divide the matrix into columns, and use the loop to go over and plot the matrix column-
by-column while also having the hold command enabled to keep drawing on the same figure
canvas:

[m, n] = size(rainfall);
i=1:n
scatter(months', rainfall(:, i))
hold on

grid on
hold off

Page 9 of 40

100

80 i 0

war

o

40 r

o

o]

20

s}
5]

Q

QO
O
]

D O
via]
}r“-
=1

=
ra
b
=
[}
]

12

We can also draw the data as bars using the bar command:

bar(months, rainfall)
grid on

100 T T T T T T T T T T T T

80]

60

50 N M

40

30

20

10

Page 10 of 40

Plotting a Matrix against another Matrix
Suppose we have the three functions:

yi(t) = sin(5t),

yo(t) = sin(3t) + cos(7t), and

y3(t) = 2sin(0.5¢)

and you want to plot the three functions, with the same number of points of ¢ (say 100) but you
evaluate r at different points. We can group the r samples in a matrix of size 3x100, and evaluate
the functions in another matrix, then plot the matrices against each other. But remember when
plotting matrices, MATLAB plots a column against a column, so we should make sure we prepare
our data in this way to make sure we draw the desired plot:

tl = linspace(@, 2*pi, 100)';
t2 = linspace(-pi, pi, 100)';
t3 = linspace(-2*pi, 2*pi, 100)';

t = [t1, t2, t3];
trigo = [sin(5*t1),
sin(3*t2) + cos(7*t2),
2*sin(@.5*t3)];
plot(t, trigo)
grid on

ENS vl 1 v | I ' ') W i

A5F v 1 4

Page 11 of 40

Plotting Different Data Against a Common Axis

Table 2 has more detailed meteorological data on the city of Amman. It has information about the
average high and average low temperatures, as well as the average monthly sunshine hours, and
the number of rainy days in each month. This table has one common base for all different data: the
months. Yet, some data are temperatures in Celsius, others are in hours, while the last data is
number of days. One way to plot such data is as follows:

Table 2: Amman Meteorological Data
Amman Jan Feb Mar Apr May Jun Jjul Aug Sep Oct Nov Dec

Average High(c®) 27 139 176 233 279 309 325 327 308 268 201 146
Averagelow(C") 42 48 72 109 148 183 205 204 183 151 9.8 5.8
Precipitation Days 11 109 8 4 1.6 0.1 0 0 0.1 23 53 8.4
Average Monthly
sunshine Hours

79.8 182 2263 266.6 328.6 369 3875 3658 312 2759 225 179.8

Initially, we store this table inside the matrix ammanMeteo:

months = [1:12]";

ammanMeteo = [2.7 4.2 11 79.8;
13.9 4.8 10.9 182;
17.6 7.2 8 226.3;
23.3 10.9 4 266.6;
27.9 14.8 1.6 328.6;
30.9 18.3 0.1 369;
32.5 20.5 0 387.5;
32.7 20.4 0 365.8;
30.8 18.3 0.1 312;
26.8 15.1 2.3 275.9;
20.1 9.8 5.3 225;
14.6 5.8 8.4 179.8];

Then, we use a special type of plot command called stackedplot:

h3
p3

figure;
stackedplot(months, ammanMeteo)

As you can see, all four variables have been stacked on top of each other. Each has its own y-axis,
and they share a common months axis. But the issue now, is that all our plots so far need
annotation. That is to specify plot titles, axis names, legends and so on. We will see how to do this
later.

By default, the stacked plots are continuous, so what if we want to change some or all of the plot
types to scatter or stairs (Only these two types are supported in stackedplots)? In this case, after you
create the stackedplot. you can edit the type as needed:

Page 12 of 40

p3.LineProperties(1l).PlotType = 'scatter’;
p3.LineProperties(2).PlotType = 'scatter’;
p3.LineProperties(3).PlotType = 'stairs’;
p3.LineProperties(4).PlotType = 'stairs’;
ol o [e o J ¢
Column 1 20 . o] - !
Lo L
101
¢ -~ Q o -
151 (8] O
Column 2

(8]

101) O
10F

Column 3 gl

300}
Cal 4
umnd o1

Tricky Function Plots

When we plot functions such as y(x) or x(7), our approach is to create a vector of inputs x or ¢ then
substitute them into the associated function. We are creating discrete points that MATLAB plots. Do

not be misled to believe that what you see is an actual continuous function. MATLAB has connected
the discrete data points (samples) and gave you the illusion that the function is continuous .

In fact, MATLAB is good at approximating the function shape depending on how many sample data
points you provide it with. Few samples might not capture the actual shape and characteristics of the
underlying function, while too much data points are unnecessary, time-consuming and slow your
code. In the code below, we will attempt to draw the sine function in four separate figures over the
entire range of —2z to 2z using different vector sizes:

t = linspace(-2*pi, 2*pi, 4);
y = sin(t);
plot(t,y)

Page 13 of 40

1 .
08
06 [
0.4 f /
02 /
! /
0.2}
04l
06}
08l
-1 L L L L L
8 5 -4 2 0 2
figure
t = linspace(-2*pi, 2*pi, 10);
y = sin(t);
plot(t,y)
1 T T T
!
0.8 I|I|l /‘ll
06 f | \
||l I
04 {
.1'1
0.2} / \
02}
04l
D6 \ II
08 \/
-1 L L L
8 -6 -4 -2 0
figure

t

y = sin(t);

plot(t,y)

= linspace(-2*pi, 2*pi, 100);

Page 14 of 40

1 T T T T T
/ /\
/
0.8 i [1
06 [1
04| " . f 1
021 [."I , _
D | | I,' I|II i
02F | f | / 4
04 f ' / 1
D6 III | T
08 .f} ;"' 1
) . \/ .
8 5 4 2 0 2 4 6 B
figure
t = linspace(-2*pi, 2*pi, 1000);
y = sin(t);
plot(t,y)
! /N ' 7\
/ .
0.8 / [.
06 [T
04} ' 1
02 ' | _
oF .I 1
0.2f ' . .'I .
04t [f T
06+ I.'I .'II i
I ' / 1
0.8 ! /
\ /
L AN L f
2 0 2 4 6 8

B
-8 4

Notice how smaller vectors yielded different shapes that the expected sine function. As we increased
the number of sample points, the shape did indeed turn into a sine. There is no observable

difference between using 100 or 1000 samples.
Page 15 of 40

In the previous case, we could easily determine that 100 was enough because we know what to
expect when drawing a sine wave. But what if we are working with a new function whose shape we
do not know, how can we guess that the number of samples we choose is indeed enough?

Suppose we want to plot the function y(x) = cos(tan(x)) — tan(sin(x)) over the range of 1 to 2.
Normally, we would create a large vector of x then substitute it in the function equation:

x = linspace(1, 2, 200);
y = cos(tan(x)) - tan(sin(x));

plot(x, y)

-0.5 T T T T
A

alll

| | |

AsF N\ |
)

2T h |
kY .'l

1 1.1 12 1.3 1.4 1.5 1.6 1.7 1.8 1.9

figure
= linspace(1, 2, 2000);

X
y = cos(tan(x)) - tan(sin(x));
plot(x, y)

Page 16 of 40

0.5 T T T I:lﬁ'|

151 | ﬂ

-2.5T

1 11 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
As you can see, plotting over large samples 200 and 2000 gave different plot shapes? Do we even

know if 2000 are enough now?

MATLAB has a smart function plot command called fplot which takes as input the function as an
anonymous function, and the range we want to plot the function over. The fplot command internally

determines the correct number of samples it needs and then plots the function accordingly. The
default interval for the fplot command is from -5 to 5. To draw the previous function using f1lpot and

over the range from 1 to 2, one can write:

fplot(@(x) cos(tan(x)) - tan(sin(x)), [1 2])

06 {
I

0.8T

A2r |
4r |
|

A6F |

18T |
|

22T | /

24T

Page 17 of 40

Figure Annotation and Options
Professional plots need not only display accurate representation of the underlying data, but also

make the reader understand what they represent. Plots must have titles, proper axes titles, and
legends. Let’s start over with our first plot, and edit the code with proper annotation. In the first
instance, we will assume that we did not save the plot in an object, so by default, all subsequent plot

commands will default to the most recent plotting canvas. To add titles, names for any axis, or a
legend, we use the title, xlabel, ylabel, and legend commands. We pass a string for each that

would appear into its respective location.

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);

plot(x1, y1);
title('Plot of a Sine Wave')

xlabel('x")
ylabel('sin(x)")
legend('sin(x)")

grid on
Plot of a Sine Wave

{

IIII I

0.2 . \
II

sin{x)

0.8 Y
\/
4 53 8

You can also change the font size, type, and colour of the figure title or labels. You can do so by
using name-pair arguments. That is, you specify what you want to change followed by its value. The

available options are:
e 'FontSize': Default (11), you can set the size to 12, 14, etc.
e 'FontWeight' Default (‘'normal) can be either 'normal’ or 'bold'’
e 'FontName' Default ('FixedWidth") or the name of a font installed and supported by
your OS
MATLAB assigns default colours, you can change them to any colour as

e 'Color'
specified in the customization section (later).
Page 18 of 40

x1 = linspace(-2*pi,2*pi);
'bold', "FontName",

yl = sin(x1);
plot(x1, y1);
title('Plot of a Sine Wave', 'FontSize', 16, 'FontWeight',
'FixedWidth')
xlabel('x', 'FontSize', 14, 'FontWeight', 'bold', "FontName", 'FixedWidth',
"Color', 'red')

'FontSize', 14, 'FontWeight', 'bold', "FontName",

ylabel('sin(x)",
'FixedWidth', "Color’',
legend('sin(x)")

‘red')

grid on
Plot of a Sine Wave
1 T T T T T T T
osl / // sin(x) |
. I|l|.' |
06 f f
0.4 / ﬁl .
02| ; \ f h
W / " [l\
e 0 ' \ f \
El| \ II| “ ||I
0.2f | | i
|II | \ ||I|
041 f .
06 Ill' .'III
08} f /
| Y/
0 2 4 6 8

_ -8
You can also change the span of the x-axis and y-axis, this does not affect the range of the function,

only the axis:

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);

plot(xl, y1);
title('Plot of a Sine Wave')

xlabel('x")
ylabel('sin(x)")

legend('sin(x)")

axis ([-7 7 -2 2]) % Insert the range of the x-axis and y-axis in order

grid on

Page 19 of 40

Plot of a Sine Wave

15T 1

o5t Y / \ 1

singx)

osf \ / \ FARNE

at — i

If you want to specify a size and location for your figure on the screen, you need first to set the units
(‘pixels' (default), ", 'centimeters’, 'inches'), then you specify the following vector [left bottom
width height] in the unit you have chosen.

So, in the next example, we are specifying that the figure is to be 300 pixels away from the bottom
left corner of the screen, and that it has a size of 640 x 480 pixels.

figure("Units","pixels™, "Position", [300 300 640 480])

x1 = linspace(-2*pi,2*pi);

yl = sin(x1);

plot(x1, y1);

title('Plot of a Sine Wave')

xlabel('x")

ylabel('sin(x)")

legend('sin(x)")

axis ([-7 7 -2 2]) % Insert the range of the x-axis and y-axis in order
grid on

Page 20 of 40

Plot of a Sine Wave
2 T T T T T T T

sinx}

15 i

J \
05+ / / |

sin(x)

If you need to overwrite the labels used on the x-axis or y-axis, you need to pass the new labels as a
string and specify which axis you are changing (xticklabels). For example, we can replace the
months name in the previous plot with their name:

plot(months, rainfall)

xticks([1:12])

xticklabels({'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', ‘Aug', 'Sep’,
'Oct', 'Nov', 'Dec'})

grid on

100 —
90 |
80

ol \ I;-' \

60 ‘

50

40T

20f b e

o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec

Page 21 of 40

To annotate stacked plots like the one we created for Amman's metrological data, we need to
specify multiple y-axis labels for each stacked plot. Create a string cell for each stacked plot in the
order they appear inside the matrix, and pass it to the stackedplot command:

figure("Units","pixels", "Position", [300 300 800 600])

newYlabels = {'Average High Temperature', 'Average Low Temperature',
"Precipitation Days', 'Sunshine Hours'}; % Note we create a cell array by
using curly brackets {}

stackedplot(months, ammanMeteo, 'Displaylabels’,newYlabels)

title('Amman Meteolorgical Data')

xlabel('Months")

Amman Meteolorgical Data

20k
Average High Temperature

w0 s

150 - ™~
P
Average Low Temperalure o \
- o
10f / .
.
-~

10- N

Precipitation Days ¢| \

3001

Sunshine Hours

Maonths

Tiled Plots

Sometimes we need to display four, six, or nine plots on the same figure. We can do this using tiled
layout. Let us define and draw four sine waves at different frequencies and draw each in a different
tile in a 4x4 grid:

x = linspace(9,30);
yl = sin(x);

y2 = sin(x/2);

y3 = sin(x/3);

y4 = sin(x/4);

t = tiledlayout(2,2);

So far, the figure is empty, to start adding plots, we need to use the nexttile command and any
plot command of our choice. You can give titles to your tiles as you go:

Page 22 of 40

% Tile 1
nexttile
plot(x,yl)

title('F = 1')

% Tile 2
nexttile
plot(x,y2)

title('F = 1/2")

% Tile 3
nexttile
plot(x,y3)

title('F = 1/3")

% Tile 4
nexttile
plot(x,y4)

title('F = 1/4")

You can change the spacing between the tiles by using one of these three options ('normal’,

‘compact’, 'none’)
t.TileSpacing
or

t.TileSpacing

'compact’;

'none’;

At the end, you can create a shared title and common axes using what we have already learnt:

title(t, 'Sine Wave Plots at Different Frequencies')

xlabel(t, 'Time (t)")
ylabel(t, ' 'sin(ft)")

Page 23 of 40

Sine Wave Plots at Different Frequencies

F=1

F=1/2

1 v 1
N f / [f / /
I|I | |‘I \ I / | / / J."'
. [[[[f f /
05 . L)] esl ' f
- I| I| I | II | \ | i If |
I | ‘I II | \ | | / / {
| f 1 f J \ /
of || | [\' 0 i \ f
Vo III ['I \ / /
I\ | \ | | | II / /
05 \ | I\ I l'. | '|\ | 05 |
| | | I," .JI
|’ I‘I | \ I‘I | /
o i \/ \J’ \'l 4 / /
E 5 10 15 20 25 30 0 5 0 15 20 25 30
= F=113 F=1/4
1 / 1
o5t/ x/ 0.5
fn’i lin’
/ {
/ /
0 / 0
/ /
/ /
05 / 05
-1 E
0 5 10 15 20 25 30 0 5 0 15 20 25 30

Time (t)

We can make one tile span multiple tiles as follows:

t2 = tiledlayout(2,

% Tile 1
nexttile
plot(x,yl)
title('F = 1")
% Tile 2
nexttile
plot(x,y2)
title('F = 1/2")
% Tile 3
nexttile([1 2])
of 1 row, 2 columns
plot(x,y3)
title('F = 1/3")

t2.TileSpacing = '

2);

% Here we are specifying that this tile will take the space

none';

Page 24 of 40

osi | [| [| 105 /

| | |II II| II |‘| ‘|| II|' |'| \ \ ‘.-"‘II
I|| ‘II |||II I\II l', .II | -"f ."I‘
VARV VAN \J /

-1 -1
o 5 10 15 20 25 30] 5 10 15 20 25 30
F=1/3
1 T T T T = =T
05 b
ok 4
0.5
B I I . I I
o 5 10 16 20 25 30

Suppose you want to modify a certain tile after plotting it. For example, in the previous example, to

plot sin(%l‘) instead of sin(%t) , all you need to do is specify the tile number:

nexttile(3)
plot(x,y4)
title('F = 1/4")

T .' .‘ 7 7 7
II.-F\\ ."' \". ."'\. .'I\ f'l \»IH / \
0.5 |f | [(| | \ 0.5 ."‘I

A7
B VA VARV \/ /

o 5 10 15 20 25 30 0 5 10 15 20 25 30
F=1/4
1 T - T T T T
//
0.5 T
) 4
05F T
S
B I I I s e I
o 5 10 15 20 25 30

Page 25 of 40

Plot Customization

You can change the colour of your plot, the line shape, width, and even add markers at
measurement (sample) points by using name-value pair arguments. Each of these pairs is optional.
So you can use any combination of them, or none. You start by writing the option name you would
like to change, then assign to it any of the applicable options. The main properties which you can
change are:

e 'Color': MATLAB can accept colors either as an RGB values triplet, or their equivalent
color Hexadecimal code.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4
0.6 0.7]. On the Internet, you will find RGB values from the range of 0 to 255. In order to use them in
MATLAB, you need to divide them by 255.

A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from @ to FF each (e.g. '#FF8800'.
It is basically writing the RGB codes in hexadecimal next to each other).

You can use any of the many available websites to find beautiful colour palettes for your plots.
These websites will provide you with the RGB and Hex codes:

¢ https://htmlicolorcodes.com/
¢ https://www.color-hex.com/

¢ https://en.wikipedia.org/wiki/Web_colors

For few select colours, MATLAB has assigned names that you can use instead of their RGB or
hexadecimal notation.

Page 26 of 40

https://htmlcolorcodes.com/
https://www.color-hex.com/
https://en.wikipedia.org/wiki/Web_colors

Color
Name

‘red’
‘green’
"blue’
"cyan'
'magenta’
"vellow"
'black’
'white'

"none”

Short
Name

Mot

applicable

RGB Triplet

[1@ 8]
[@ 1 8]
[@@e 1]
(@1 1]
[101]
[11 8]
[@ @ a]
[11 1]

Mot applicable

Hexadecima
Color Code

Appearance
'#FFooGa’
'FOAFFEa’
'FOQBAFF"
'RAAFFFF’
"#FFEAFF’
"#FFFFEQ"

'Fogaoca’

' #FFFFFF"

Mot applicable Mo color

Here are the RGE triplets and hexadecimal color codes for the default colors MATLAB

uses in many fypes of plots.

RGB Triplet

(@ @.4476
[8.8508 @.
[6.9200 @.
[0.4948 0.
[8.4660 @.
[8.3818 @.

[@.6358 8.

8.7418]

3258 @.9988]

god4e .

1348 @.

6748 4.

7458 @.

1258]
5568]
1888]

5338)]

.1848]

Let's try few of these colours:

x = linspace(9,30);

yl = sin(x);

y2 = 2*sin(x/2);

y3 = sin(x/3);

y4 = 0.25*%sin(x/4);

Hexadecimal Color Code Appearance

'#@9728D"

"#0B5319°

'FEDB128’

"#7E2FBE’

"RITACIA

'#4DBEEE"

"RAZ14ZF'

figure("Units","pixels", "Position", [300 300 600 480])

hold on

plot(x,yl, "color",
plot(x,y2, "color",
plot(x,y3, "color",

"#7E2F8E")
"blue')
'#DC143C")

% Crimson

plot(x,y4, "color", [0.1843, 0.3098, 0.3098]) % DarkSlateGray RGB = 47 79 79

Page 27 of 40

e 'LineStyle' You can use it to change the shape of your line from solid lines to dashed or

dotted. MATLAB has these options available:

Line Style Description

- Solid line

t--t Dashed line

t Dotted line

-.t Dash-dotted line

"nane’ Mo line

Resulting Line

Ma line

e 'LineWidth' Default (0.5) You can change the thickness of your line using this option:

Let us modify our code above to change the line type and widths:

x = linspace(0,30);
yl = sin(x);

y2 = 2*sin(x/2);

y3 = sin(x/3);

y4 = 0.25*%sin(x/4);

figure("Units","pixels", "Position", [300 300 600 480])

hold on

Page 28 of 40

plot(x,yl, ‘'LineStyle', '-' , 'LineWidth', @.75)
plot(x,y2, 'LineStyle', '--', 'LineWidth', 1)
plot(x,y3, 'LineStyle', ':' , 'LineWidth', ©.25)
plot(x,y4, 'LineStyle', '-.")

15F I

0.5

05f ' I'l,l \ f \ I I'-._- ;H
i .ﬁl IE \ug \VH 1 \uﬁ \\

A5F \ /

-2

e 'Marker' By default, MATLAB shows no markers on the line. However, if you need to, you
can display markers on all or some of the samples in the plot. Markers come in different
shapes. The options available in MATLAB are:

Page 29 of 40

Value Description

‘o Circle

"t Plus sign

ik Asterisk

Lt Point

"ut Cross

'square’ OF "5’ Square

‘diamond" or "d" Diamond

e Upward-pointing triangle

"t Downward-pointing triangle

"nt Right-peinting triangle

gt Left-pointing triangle
'pentagram’ or 'p" Five-pointed star (pentagram)
'hexagram' of 'h' Six-pointed star (hexagram)
'none’ Mo markers

In this example, we have plotted the sine waves over 100 samples, so we would expect to see 100
markers for each plot:

x = linspace(0,30, 100);

yl = sin(x);

y2 = 2*sin(x/2);

y3 = sin(x/3);

y4 = 0.25*%sin(x/4);

figure("Units","pixels™, "Position", [300 300 600 480])
hold on

plot(x,yl, 'Marker', 'x
plot(x,y2, 'Marker', '*
plot(x,y3, 'Marker', 'o
plot(x,y4, 'Marker', '+

)
)
")
)

Page 30 of 40

e 'MarkerIndices': You can use this to only print the markers on a subset of the samples.

x = linspace(9,30);

yl = sin(x);

y2 = 2*sin(x/2);

y3 = sin(x/3);

y4 = 0.25*%sin(x/4);

subsetIndices = [1:10:100];

figure("Units","pixels", "Position", [300 300 600 480])
hold on

plot(x,yl, 'Marker', 'x', 'MarkerIndices', subsetIndices)
plot(x,y2, 'Marker', '*', 'MarkerIndices', subsetIndices)
plot(x,y3, 'Marker', 'o', 'MarkerIndices', subsetIndices)
plot(x,y4, 'Marker', '+', 'MarkerIndices', subsetIndices)

Page 31 of 40

151 | \ : \
. | \ |
: |

1 -ﬂm\ H |
AN 1**‘\’ |

At \ | \

'MarkerSize' by default, markers have a size of 6 points. Use this property to change its

size.

= linspace(0,30);
yl = sin(x);
y2 = 2*sin(x/2);
y3 = sin(x/3);

y4 = 0.25*%sin(x/4);
figure("Units","pixels™, "Position", [300 300 600 480])

hold on

plot(x,yl,
plot(x,y2,
plot(x,y3,
plot(x,y4,

'Marker',
‘Marker',
‘Marker',

‘Marker',

'"MarkerSize', 12)
‘MarkerSize', 12)
‘MarkerSize', 12)
‘MarkerSize', 12)

Page 32 of 40

e 'MarkerEdgeColor' and 'MarkerFaceColor' are used to give markers a different color
than the plot. The former changes the colour of the markers edge, the latter, it fills it with a
colour as well.

x = linspace(9,30);

yl = sin(x);

y2 = 2*sin(x/2);

y3 = sin(x/3);

y4 = 0.25*%sin(x/4);

figure("Units","pixels", "Position", [300 300 600 480])

hold on

plot(x,yl, 'Marker', 'x', 'MarkerSize', 4, 'MarkerEdgeColor', '#77AC30'")
plot(x,y2, 'Marker', '*', 'MarkerSize', 4, 'MarkerEdgeColor', '#D95319')
plot(x,y3, 'Marker', 'o', 'MarkerSize', 4, 'MarkerEdgeColor', '#4DBEEE',
‘MarkerFaceColor', '#4DBEEE')

plot(x,y4, 'Marker', '+', 'MarkerSize', 4, 'MarkerEdgeColor', '#77AC30")

Page 33 of 40

Comet Plot Animation

Sometimes, during presentations or classes, you might need to animate your drawings. MATLAB
allows you to animate your plot using many techniques. Here, will only present the simplest one:
comet animation

The comet animation traces and plots the function from beginning to end. The following example
plots the butterfly shape as an animated comet.

figure

t =0:0.01:10;

x = sin(t).*(exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).75);
y = cos(t).*(exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).75);
comet(x, y)

Page 34 of 40

3D Plots

In Engineering applications, we often need to visualize functions in the form z = f(x, y) MATLAB

offers plenty of functions to plot 3D graphs. You can apply many of the plot options like coloring and
tittes as we used for 2D plots.

To start, let us plot the function:

2= flny) = xeti0?

Obviously, we need to apply the function on every possible value of the pair (x, y), but this is
impossible because both would extend to from —co to —co. So we need to specify a range for this
function on the xy-plane both for the x-axis and the y-axis. Then we need to create all the possible
pairs within this range. This would have been cumbersome, but MATLAB provides the meshgrid
command that would do exactly the same thing in one step.

Let us assume that we want to plot the above function within the range of [—3, 3] in steps of 0.1 for
the x-axis, and within the range [—2.2] in steps of 0.1 for the y-axis, to do so, simply write:

[x, y] = meshgrid (-3:0.1:3, -2:0.1:2);

But if we want to draw both the x-axis and y-axis to extend to the same range and same increment,
you can use:

[x, y] = meshgrid (-3:0.1:3);
All that remains is to write the function and plot it. MATLAB offers the mesh command that draws 3D

functions.

Page 35 of 40

Copyright @ (2020) Dr. Ashraf Suyyagh — All Rights Reserved

figure

z = X *exp(-1*((x-y."2).22 + y."2));
mesh(x,y,z)

grid on

0.5

The varying colours illustrate the hills and valleys of the 3D function (local and global minima and
maxima points) and they change colour moving toward the peaks and lows of the function.

We can redraw this function by plotting the surface of the 3D function using the surface command:
figure

surf(x,y,z);
grid on

For Internal Use Only at the Department of Computer Engineering — University of Jordan Page 36 of 40

i ;‘;’;‘;“;\‘\\\\ .
N
AR ii&}d

W
’m‘

You can draw the function by looking at it orthogonally from the z-axis, and then you see the
projection of the values of the function onto the plane:

figure
contour(x,y,z);
grid on

at | . . i

-3

Use the surface command to combine both the surface and contour commands:

Page 37 of 40

Copyright @ (2020) Dr. Ashraf Suyyagh — All Rights Reserved

figure
surface(x,y,z);

-1 -

-2

-3
-3 -2 -1 o] 1 2 3

You can also combine the mesh and contour commands in one command:

figure
meshc(x,y,z);
grid on

And finally, you can use the waterfall command to draw a 3D plot that looks like a waterfall:

For Internal Use Only at the Department of Computer Engineering — University of Jordan Page 38 of 40

figure
waterfall(x,y,z);
grid on

0.5

Storing MATLAB Figures

Using the savefig command, you can easily save your figure in a .fig format that you can open in
MATLAB and edit using the plot GUI. You can use savefig to save the most recent figure or by
passing the figure object handle. The gcf object variable holds the most recent figure drawn.

figure

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);

plot(x1, y1);

savefig(gcf, 'myImage.fig')

You can save your figure as an image in numerous image formats using the saveas command. You
can save your plotin .jpg, .png, .bmp, .tif or vector graphics formats such as .pdf and .eps.
The gcf object variable holds the most recent figure drawn.

figure

x1 = linspace(-2*pi,2*pi);
yl = sin(x1);

plot(x1l, y1);

saveas(gcf, 'myImage.jpg")

Page 39 of 40

Summary for Creating Professional Plots

1.Each axis must be labelled with the name of the quantity being plotted and its units!

2.Each axis should have regularly spaced tick marks at convenient intervals —not too sparse,
but not too dense—with a spacing that is easy to interpret and interpolate. For example, use
0.1, 0.2, and so on, rather than 0.13, 0.26, and so on.

3.1f you are plotting more than one curve or data set, label each on its plot or use a legend to
distinguish them.

4.1f you are preparing multiple plots of a similar type or if the axes" labels cannot convey
enough information, use a title.

5.1f you are plotting measured data, plot each data point with a symbol such as a circle,
square, or cross (use the same symbol for every point in the same data set). If there are
many data points, plot them using the dot symbol.

6. Sometimes data symbols are connected by lines to help the viewer visualize the data,
especially if there are few data points. However, connecting the data points, especially with a
solid line, might be interpreted to imply knowledge of what occurs between the data points.
Thus, you should be careful to prevent such misinterpretation.

7.1f you are plotting points generated by evaluating a function (as opposed to measured data),
do not use a symbol to plot the points. Instead, be sure to generate many points, and
connect the points with solid lines.

Experiment version 1.00
Last Updated November 18th, 2020
Dr. Ashraf Suyyagh - All Rights Reserved

Page 40 of 40

University of Jordan
School of Engineering and Technology
Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Experiment 5 - Statistics and Probability

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 5 - Statistics and Probabilityooiuiiiiiiieee e 1
Basic Statistical and ProbabiliStic ANAIYSIS..........oiiiiiiiiiiie e r e e e e 1
Skewed Distributions and the Mean and Median ... 4
The Standard Deviation and VANTANCE.ciiiii it e e e e e e e e e e e aeneees 6
ANAIYSING SKEWEA DAL@.......cciiiiiiieiiiie et e e e e e e e e e e e e e s s e e e eeaeeeesnnnsraeneeeeeeeannnnnes 7
Understanding and Plotting BOXPIOTSoviiviiiiiiiiiiiiiiiiiiiieiieeeeeeeeeee ettt ee e e eeeeeeeeees 10
ThE MOVING AVEIAQEccc i i 13
[=\ T ol o 11 (0 o | = o 0 RSO 14
Random Number Generation (RNG)uuiiiiieiiiiiiiiiiie et e e er e e e e e e e s e e e e e e e e e nnsneeeeeeas 17
Uniformly Distributed NUMDEIS.........uiiiiiiii e e e e e e e e e e 17
Uniformly Distributed PSeudorandom INTEQEIS.coviiiiiiiiiee e e e ee e e e e e snraaneeeee e 19
Normally (Gaussian) Distributed Random NUMDEISouviiiiiiiiiiiiiee e e e 20
Random PermutationS Of INTEOEISuuii ittt e e e e e e e e e aaaeeeeeeeeeens 22
10 0= o 1 12RO 23
Probability Density FUNCHONS (PDF)....cuiiiiiiiiiiiiiie ettt e e e e s e e e e e e e e e e e e e e s s nnnnneneeeeeeeans 24
Cumulative DENSILY FUNCHONSccoiiiiiiiiiiiiee ettt ettt e e e e et e e e e e e s e e be e e e e e e e e e s nnnnaeeeeeas 25

Basic Statistical and Probabilistic Analysis

MATLAB offers numerous functions and tools for statistical and probabilistic processing of data. In
this section, we will present the basic functions that MATLAB offers. To start, we will define a vector
and an array to work with:

A=1[1, 5, 7, 8.5, 8, 3.5, 1.25, 5, 4, 4, 6, 7.75, 1.4, 10, 10, 9.7];
B=[4,5, 5, 7;

10, o, 12, 4,

2, 1, 4, 9;

5, 6, 10, 7; ...

12, 7, 8, 0];

The min and max commands return the minimum or maximum value in a vector, or the minimum or
maximum value of each column in a matrix:

Page 1 of 27

min(A)

ans =1
max (A)
ans = 10
min(B)
ans =
2 0 4 0
max(B)
ans =
12 7 12 9

We use the average (mean) and median as two different measures of the central tendency (central
position) for a set of data.

To compute the average of collected observed data in MATLAB, we use the mean function.

mean(A)
ans = 5.7563

If the input to the mean function is a matrix, the average is by default computed column-by-column:

mean(B)

ans =
6.6000 3.8000 7.8000 5.4000

Many times, the median (average) does not necessarily convey the correct picture of the underlying
data due to data outliers. The fact that the average is susceptible to the influence of outliers is a
major disadvantage. Data outliers are the values (observations) that lie an abnormal distance from
the other values (observations). This could be due to an actual observation, or sometimes a glitch in
measuring the observation. For example, assume we have a company where the annual wages of
the 15 employees (security, janitor, cleaning personnel, HR, engineers) and the CEO, CTO, CFO
are as follows (in thousands of JODSs):

annual_salary = [3.6, 3.8, 3.4, 6, 6.5, 6.3, 6.2, 7, 7.5, 7.8, 7.2, 8, 8.2, 8,
8, 40, 36, 36];

Computing the mean in this case will give us a truly misleading representation! The mean salary will
be around 11,639 JODs, where in fact almost all employees get much less income. Do not trust the
average, ever!

Page 2 of 27

mean(annual_salary)

ans = 11.6389

Another example for outliers is if we have a class of 20 students taking an exam; eighteen students
showed up to the exam while two students missed it. The grading system automatically granted
zeros to these students. Taking the average might give misleading info about the actual performance
of the students. The two zeros are not related to the actual performance of the absent students, it
simply means they did not attend. It is up to the data analyst to examine the data before applying
any statistical processes. Should you for example consider these outliers as abnormal or exclude
them? Or are they expected albeit rare and thus should be considered in the analysis?

The median is the value at which half of the data falls below, and the other half falls above. It is less
affected by outliers and skewed data, and thus; in many cases can provide a better way to
understand the data. We use the MATLAB function median to compute the median. So, in our case
for the company employees, the median is 7,350 JODs.

median(annual_salary)

ans = 7.3500

The median operates on matrices column-wise:

median(B)

ans =
5 5 8 7

We can get the most frequently occurring value in a set by using the mode command. For example,
the annual income 8,000 JOD is the most frequent salary in the set annual_salary.

mode(annual_salary)
ans = 8

As most MATLAB functions, the mode command operates on vectors or matrices in a column-wise
fashion.

mode (A)
ans = 4

When there are multiple values occurring equally frequently, mode returns the smallest of those
values. For example, in matrix B, each value occurs exactly once in each column, so the mode
function returns the smallest value in each column.

mode (B)

ans =

Page 3 of 27

Skewed Distributions and the Mean and Median

When we have lots of data samples, we often divide them into equal ranges, and count how many
samples occur within this range. Basically, creating a histogram (we will learn how to draw
histograms later). Understanding a histogram helps us determine which statistical tool is better to
use given our data set: the mean or median. If we have a distribution that looks like a normal
(Gaussian) distribution, then we can use either the mean or median to present our data. However, in

this case, the mean is widely preferred.

120

1007

60

Frequency

40

20+

o] | I
2.00 4.00 .00 .00

However, if the data is skewed towards the right or left, then the values for the median and mean will
start to vary. In these cases, the median is generally considered to be the best representative of the
central location of the data. The more skewed the distribution, the greater the difference between the

median and mean.

Page 4 of 27

Copyright @ (2020) Dr. Ashraf Suyyagh — All Rights Reserved

120

100

Median (g)
801 /
=
o _|
=
3
= 60 Meaw (10.1)
i
404 |
207
o —= T T T
0.00 10.00 20.00 30.00 40.00

The next figure shows the actual distribution of the grades of the course CPE101 taken by 204
students at the University of Jordan (Fall 2020). We can easily observe that the distribution is
Gaussian (normal) and almost symmetrical. If the distribution is symmetric, then the mean will in fact
equal the median and will be around half the full range. In this particular case, we expect that the
mean and median are extremely close, which is in fact the case: 15.6 and 15.7, respectively.

I Ferticipants

27
24
21
18
15
12
9
6 _ _
3
0 — - [
%95 DPQ %95 %QQ '\Q?% ,O/QQ \‘SQ @95 .3:& r‘/&b r{fm q/b‘éb r‘;s q‘}:& rb@s

Q Q Q‘ Ql v . . v . v . v v . v
N S N S N O O Q O Q O Q Q O Q

S N R - R T S - R I SR
S N T Ol Y S

Participants

For Internal Use Only at the Department of Computer Engineering — University of Jordan Page 5 of 27

The Standard Deviation and Variance

The standard deviation (&) provides a measure of how widely or narrowly the values (observations)

are away from the mean. It is a measure of the dispersion (spread) of a set of values. We know from
the statistics course that around 68.2% of the observations must be between +4, and that 95.4% of

the values must be between +2¢, and 99.6% of the values must be between +3¢, and finally 99.8%
of the values must be between +4¢. In our grades example above, the standard deviation of our

student grades was 5.4, which means that 68.2% of the students have a grade between 10.2 and
21, and that 95.4% of the students have a grade between 4.8 and 26.4.

In MATLAB, we use the std command to compute the standard deviation. Similar to the mean and
median, it operates on vectors and columns of matrices:
std(A)

ans = 3.0986

std(B)

ans =
4.2190 3.1145 3.3466 3.5071

However, note that the standard deviation provides useful insights when the underlying set is indeed
normally distributed. If the data is skewed, then the standard deviation provides little to no
information about the underlying data! For example, lets apply the std command on the
annual_salary data which gives a ¢ = 11,947 JOD.

std(annual_salary)

ans = 11.9464

We know that the mean itself (11,639 JOD) was not reliable in this skewed set in the first place, but if
we momentarily ignore this and attempt to apply what we know of the standard deviation, then we
can see that 68.2% of the employees will be getting between -308 JOD to 23,586 JOD. Clearly, this
is wrong (negative salary), and we know that 15/18 = 83.33% of the employees get below 8,200
JOD. The morale of the story, know when to use these functions and do not just apply them
universally for all cases!

We also know from statistics courses that the variance is the square of the standard deviation (¢2).
Similar to the standard deviation, it measures the spread of the data from their mean. In MATLAB,
the command var works on vectors or matrices column-wise:

var(A)
ans = 9.6016

var(B)

ans =
17.8000 9.7000 11.2000 12.3000

Page 6 of 27

Kurtosis defines how the tails of a distribution differ from the tails of a normal distribution. Kurtosis
identifies whether the tails of a given distribution contain extreme values, and determines the
heaviness of the tails! The kurtosis of a Gaussian (normal) distribution is 3. The excess kurtosis is
defined as:

Excess Kurtosis = Kurtosis — 3

There are three types of tail heaviness:

1.Mesokurtic: If the excess kurtosis is equal or very close to zero, this means that the data
follows a normal distribution.

2.Leptokurtic: If the excess kurtosis is positive, this means the distribution tails are heavy on
either side. This usually means there are large data outliers (extreme positive or negative
events). The larger the value means that there are heavier tails and more extreme values

3. Platykurtic: If the excess kurtosis is negative, this means the distribution tails are lighter on
either side. This usually means there are small data outliers (fewer extreme positive or
negative events).

1. Mesokurtic 2. Leptokurtic 3, Platykurtic

MATLAB has the command kurtosis that you need to extract three from it to get the excess
kurtosis value.

kurtosis(A)

ans = 1.7900

Analysing Skewed Data

Skewness is a measure of the asymmetry of the distribution of a real-valued data (observations)
about their mean. It gives an idea where the peak is located.

1.1f the distribution of the dataset is symmetric and Gaussian, then the mean equals the
median and also equals the mode. The two tails of the distribution are equal. In this case the
skewness is zero.

2.1f the distribution of the dataset leans towards the right, then in this case the mode > median
> mean, and the skewness is negative indicating that the majority of the values fall to the
right and that the distribution tail is to the left.

Page 7 of 27

3.If the distribution of the dataset leans towards the left, then in this case the mean > median >
mode, and the skewness is positive indicating that the majority of the values fall to the left
and that the distribution tail is to the right.

Mean
Median
Mode Mode Mode
Median /' | I Median
& ! I I
= | I |
g ! I I
or | I |
o I I |
LL | | .
] | I |
] |] |
L X : X L X
(a) Negatively Skewed (b) Normal (no skew) (c) Positively skewed

In MATLAB, we use the command skewness to understand the underlying distribution. Let's try this:

skewness(annual_salary)
ans = 1.7410

The positive result indicates that the majority of the data leans to the right, and only few data points
(the tail) fall to the right. This is indeed true, for the majority of salaries are well below 8,000 JOD,
and the three salaries of the CEO, CTO, and CFO are towards the right!

To better understand what skewness means given the magnitude of its value, we can interpret it as

[1]:

¢ If skewness is less than —1 or greater than +1, the distribution is highly skewed.

o |f skewness is between -1 and -z or between +'2 and +1, the distribution is moderately
skewed.

¢ If skewness is between -2 and +/%, the distribution is approximately symmetric.

In statistics, a quartile divides the number of data points into four parts, or four quarters, of more-or-
less equal size. Basically, it finds the data points which divides the distribution of data into three
points, where 25%, 50%, and 75% of the data are below this point. These points are usually referred

to as Oy, 0,, O3 This metric can be used with both normally distributed and skewed datasets. The
median and @, are the same since both cut the data into two halves. The quartile points are not

necessarily evenly spaced; for example, more data points can be concentrated in the second and
third quarters than the first or fourth quarters. Along with the minimum and maximum of the data, the
guartile points provide what is called in statistics the five-number summary.

Page 8 of 27

25%% 25% 1 2h% 1 253 of all

obsersations

f f
1. gquadile 3. quartile
2. quartile

In MATLAB, the prctile command (percentile) calculates the points for @y, Q,, O3 by passing the
25th, 50th, and 75th percentages:

prctile(annual_salary, [25, 50, 75])

ans =
6.2000 7.3500 8.0000

In fact, the percentile function prctile is generic. We can use it to get the point at which 42% of the
data fall below:

prctile(annual_salary, 42)

ans = 7.0120

The distance between the third quartile Q5 and the first quartile Q) is called the interquartile range
(IQR). MATLAB has the command iqr to calculate this range:

igr(A)

ans = 4.5000

igr(B)

ans =
7.0000 5.5000 5.7500 4.5000

igr(annual_salary)

ans = 1.8000

Page 9 of 27

Understanding and Plotting Boxplots

A boxplot is a standardized way of displaying the distribution of data based on the five-number
summary (“minimum?”, first quartile (Q1), median, third quartile (Q3), and “maximum”). An example
boxplot is shown below:

Median
One half 4—— | — The other half
of the sample of the sample
Lower Upper
Quartile Quartile
One quarter ¢— | ¢«— Middle half —&|——# One quarter
of the sample of the sample of the sample
Minimum Maximum
@ (e} 3
Smallest sample value — *. ® © oocooo/o0o 0 000 o *e— Largest sample value
4' 6' 8 ' 10 : 12

whisker

| I
le— box length —&!

' Interquartile '
Range

The box illustrates the IQR (the data distribution between Q; and Q3). The line in the middle of the
box corresponds to the median or the O, point. Here the "minimum™ and "maximum" do not

necessarily mean the true or actual minimum or maximum. In fact, these two values are sometimes
referred to as whiskers. They are computed as:

e From above the upper quartile, a distance of 1.5 times the IQR is measured out and a
whisker is drawn up to the largest observed point from the dataset that falls within this
distance.

e Similarly, a distance of 1.5 times the IQR is measured out below the lower quartile and a
whisker is drawn up to the lower observed point from the dataset that falls within this
distance.

All values that occur outside this range are considered outliers, or abnormal!

Boxplots visualise the underlying data and help us infer some useful information. For example, the
shape of the inner box tells us if the distribution is symmetric or skewed:

Page 10 of 27

Normal Distribution
(Quartile 3 - Quartile 2) = (Quartile 2 - Quartile 1)

- .

Positive Skew
(Quartile 3 - Quartile 2) = (Quartile 2 - Quartile 1)

— :

Negative Skew
(Quartile 3 - Quartile 2) = (Quartile 2 - Quartile 1)

: —

Page 11 of 27

To generate the boxplot in MATLAB simply use the boxplot command:

boxplot(A)

You can draw multiple boxplots for a matrix at once, one for each column:

boxplot(B)

121 . . b
| |
| |
0F]
—_
[
8 1
6T i
4 -1 |
T
| [
ot 1 | i
[
[
ol L]
1 2 3 4

Page 12 of 27

The Moving Average

The moving average is an extremely powerful tool that extends beyond statistics. For example, it is
used to design a special type of filters called MAF (moving average filter) that is widely used in
control and embedded systems. The basic principles are the same whether we use the moving
average in filtering sensory data or smoothing our data. Probably you have seen during the COVID-
19 crisis lots of graphs that visualize the number of infected people on a daily basis. Daily numbers
fluctuate and do not easily convey trends of what is going on. Many times, you would see figures
showing a 3-Day average, or a 7-Day average of infections. Each day, the average is computed over
the last three or seven days, so the average keeps moving with the data. The oldest day data is
dropped and the new day data is used instead. The graph below shows the number of daily
infections as well as the smoothed 3-Day and 7-Day average for the UK:

Daily New Cases

Cases per Day
Data as of 0:00 GMT+0

40k
30k
20k

10k

O)

OCPPIDOPNIDPFOLADDEOPRND NP0 P o
B B R I R
FE T AT T o

Novel Coronavirus Daily Cases

MO AT A4
@ZS:\ ‘Q“é.'\ \\){\ \\)(\ \\)(\ \\} \\‘.r \\‘.r ?-\)C) ?_\}% ?b}% %Q,Q %Q,Q O(} Q& Q(} ‘;0 ‘10 \\Q
Daily Cases 3-day moving average - 7-day moving average

MATLAB offers the command movsum which takes the data and the window length we want to use to
sum all the data in.

movsum(A, 3)

ans =
6.0000 13.0000 20.5000 23.5000 20.0000 12.7500 9.7500 ---

In the above example, MATLAB sums the first three values, then it sums the 2nd, 3rd and 4th
values, then it sums the 3rd, 4th, and 5th values and so on moving in a window of size three. If you
want to calculate the moving average, simply divide the results by the window length.

Page 13 of 27

movsum(A, 3) / 3

ans =
2.0000 4.3333 6.8333 7.8333 6.6667 4.2500 3.2500 -

movsum(A, 7) / 7

ans =
3.0714 4.2143 4.7143 4.8929 5.4643 5.3214 4.8929 -

Drawing Histograms

If you have collected a set of data values (student grades, company salaries, sensor values related
to processor internal temperature over time), you need to visualize this data to better understand it
and make good use of it. A histogram is a display of statistical information that uses rectangles to
show the frequency of data items in successive numerical intervals of equal size. Histograms are
useful in studying data properties and distributions as they can be used to approximate the
probability function.

Suppose a class of 35 students have the grades:

grades = [18, 16, 16, 17, 20, 22, 15, 15, 24, 14, 13, 12, 11, 11, 1, 24, 8, 4,
4, 5, 17, 22, 7 , 16, 17, 17, 25, 7 , 13, 12, 13, 11, 26, 29, 6];

To create a histogram of this data in MATLAB, use the hist command. By default, MATLAB creates
a histogram with 10 bars distributed evenly between the maximum and minimum values. In this
case, the range for the histogram is [4, 29] and the width of each bin is ((29-4) / 10) = 2.5. Therefore,
each bar is centered at 4 + 1.25 = 5.25 (inital point) and then each successive bar center is 2.5
apart from the others.

hist(grades)

Page 14 of 27

We can manually specify the number and centre of each bar in the histogram by passing the centres
to the hist command:

hist(grades, [2:2:30])

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

In the previous example, we created 15 bins cantered at 2, 4, 6, ... 30.

If we want to get the frequency count and the location of each bin centre, we simply have to save
them as:

[count, centers] = hist(grades, [2:2:30])

count =

0 3 3 1 4 5 3 7 1 1 2 3
centers =

2 4 6 8 10 12 14 16 18 20 22 24
26 -

So, count basically tells us how many elements are in each bar; the frequency of elements occurring
within the plotted bar range.

If instead you already have the frequency of the data instead of the actual data, you can plot a
histogram using the bar plot. Suppose we have the following grade distribution for a certain course:

Page 15 of 27

Grades No. Students

4549

10

50 — 54

12

99 -59

13

60 - 64

15

69 - 69

18

70-74

19

75-79

14

80 -84

10

85 -89

6

90 -94

1

95-100

0

To plot the data as a histogram, we can do the following:

y = [10, 12, 13, 15, 18, 19, 14, 10, 6, 1, 0]

y:
10 12 13 15 18 19

X = [47:5:97]

X =
47 52 57 62 67 72

bar(x,y)

14 10 6

77 82 87

47 B2 &7 B2 67

2 77 82 87 982 o7

92

97

Page 16 of 27

Random Number Generation (RNG)

In many engineering and scientific experiments, we need to generate random data to work with.
MATLAB provides several functions to generate random data according to different specifications.

Uniformly Distributed Numbers

The rand command generates random numbers in the interval (0,1) from a uniform distribution. That
is, each number has an equal chance of showing up in the sequence like the other.

X = rand

X = 0.0975

To generate a square array of uniformly distributed random numbers, use rand(n):

X = rand(3)

X =
0.2785 0.9649 0.9572
0.5469 0.1576 0.4854
0.9575 0.9706 0.8003

To generate an array of uniformly distributed random numbers of any size m x n, use rand(m, n):

x = rand(2, 4)

X =
0.1419 0.9157 0.9595 0.0357
0.4218 0.7922 0.6557 0.8491

If you close MATLAB, and run the above commands again, you will notice that you will get the same
numbers over and over. This is because MATLAB uses the same seed to its random number
generator algorithms. In some cases, this might be useful if you are still debugging or developing
codes, but most of the time, you need truly random numbers to appear each time your codes run.
You must instruct MATLAB to change its random number generator algorithm seed and make it rely
on a new value each time. To do so, at the beginning of your programs, use the command:

rng('shuffle")
If you want to fix the seed and start over with the same sequence over and over, use a fixed humber:
rng(0)

To understand what a uniformly distributed number means, lets try to visualize the generated
random numbers. We will create 100, 10000, and 10,000 uniformly random numbers and plot them
using a histogram plot:

Page 17 of 27

hist(rand(1, 100))

hist(rand(1, 1000))

140
120
100
80
60
40

20

Page 18 of 27

hist(rand(1, 10000))

1200 T T T T T T T T T

1000

800

600

400

200

You will notice that more-or-less, the same number of values appear in each range. The more data
we generate and plot, the closer the frequencies are each to each other and the more uniform the
plot looks.

Uniformly Distributed Pseudorandom Integers

The function randi(n) returns a pseudorandom scalar integer between 1 and n.
X = randi(50)
X = 38

To generate a square array of uniformly distributed pseudorandom integers between 1 and n, use
randi(n, a) where a is the size of the square array:

x = randi(50, 3)

41 43 43
17 30 35
29 26 6

To generate an array of uniformly distributed pseudorandom numbers between 1 and n of size a x b
, use randi(n, a, b):

Page 19 of 27

X = randi(50, 2, 4)

26 23 3 10
1 46 48 19

if you want to change the interval such that it starts from a different value than 1, then simply specify
the interval as:
x = randi([-10, 10], 2, 4)

-6 -1 -8

-5
-8 -5 0

-3
Normally (Gaussian) Distributed Random Numbers

The randn command generates random numbers in the interval (0,1) from a Gaussian distribution.
That is, the probability of each number showing up in the sequence follows a normal distribution
probability:

X = randn

X = 0.1242

To generate a square array of normally distributed random numbers, use randn(n):

X = randn(3)

0.1644 -0.3978

-1.3075
-0.3501 -0.2564 -1.1253
-0.2853 -0.9355 0.5279

To generate an array of normally distributed random numbers of any size m x n, use randn(m, n)

x = randn(2, 4)

0.0054 1.1800

-1.0567 -0.2111
0.8999 -0.7637

-1.8606 0.6913

To understand what a normally (Gaussian) distributed number means, lets try to visualize the

generated random numbers. We will create 100, 10000, and 10,000 normally distributed random
numbers and plot them using a histogram plot:

Page 20 of 27

hist(randn(1, 100), [-5:0.1:5])

12 T T T T T

hist(randn(1, 1000), [-5:0.1:5])

Page 21 of 27

hist(randn(1l, 10000), [-5:0.1:5])

450 T T T T T

Random Permutations of Integers

The function randperm(n) returns a row vector containing a random permutation of the integers
from 1 to n without repeating elements. So, in order to create 10 random permutations of the
numbers 1 to 6 containing all the numbers from 1 to 6 once each:

for 1 = 1:10
randperm(6)

end
ans =

3 2 4 6 5 1
ans =

5 4 2 6 1 3
ans =

1 5 4 3 6 2
ans =

4 3 1 5 2 6
ans =

5 1 4 3 2 6
ans =

6 4 3 1 2 5
ans =

1 2 6 5 3 4
ans =

3 2 6 5 4 1
ans =

6 3 5 1 4 2
ans =

2 1 3 4 5 6

Page 22 of 27

The function randperm(n, k) returns a row vector containing k unique integers selected randomly
from 1 to n. So, in order to create 10 random permutations of the numbers 1 to 6 containing numbers
from 1 to 6 with each vector having a size of 4:

i=1:10
randperm(6, 4)

ans =

1 6 4 5
ans =

4 2 1 3
ans =

4 3 2 5
ans =

2 3 6 5
ans =

4 1 5 6
ans =

5 3 4 6
ans =

4 1 3 2
ans =

2 1 3 5
ans =

3 1 6 2
ans =

1 3 4 6

Probability

In any experiment or phenomena, the probability of an event is a number between 0 and 1 that
indicates the likelihood of that event to occur if the experiment is repeated infinitely. For example, if
we roll the dice an infinite number of times, theoretically, each side has an equal chance of showing
up which is 1/6. However, if we repeat rolling the dice hundreds or thousands of times, record the
data, and draw a histogram, the values will be close to 1/6 but not necessarily 1/6.

Histogram of One Hundred Rolis of a Die
0.25 T T T T T T

o2 Data .

Theary

[=]

-

o
T
I

Relative Fraquency

[=]
"
T
I

0.05F .

o 1 2 3 4 S 6 7
Outcome

Page 23 of 27

In the course Probability and Random Variables, you have learnt that a random variable is the term
used to express the outcome of an experiment, so in the rolling dice experiment, the random
variable X denoting the outcome will take any of the values 1, 2, 3, 4, 5, 6. In this experiment, the
random variable X is discrete. Some other experiments have random variables which can take on
continuous range.

Random variables are usually associated with functions or distributions to characterize the
experiment they come from. For example, in the rolling dice example, since the probability of each
one of the six numbers showing up is equal, then the random variable X can be characterized by a
uniform distribution.

Depending on the experiment, the outputs, and their frequencies, the distributions or functions used
to characterise the variables differ. These functions are called probability density functions (pdf).

Probability Density Functions (PDF)

Suppose we have collected the height of 10,000 Jordanian women over the age of 18 and the
results were as shown in the table below:

Height (cm) No. of Women

<144 100
144 -149 900
150 - 154 3200
155-159 2400
160 - 164 1800

165 - 169 900
170-174 600
=175 100

In terms of probability, we can use this table to calculate the probability that a Jordanian woman is
shorter than 144cm as 100/10,000 = 1%, while the probability of a Jordanian woman to be between
155 to 159 cm is 2400 / 10,000 = 24%. Remember that the sum of all probabilities must equal 1,
because the area under the pdf curve must be equal to 1.

We can visualize this data and create a pdf function describing the probabilities as follows:

h = [100, 900, 3200, 2400, 1800, 900, 600, 100]

h =
100 900 3200 2400 1800 900 ---

To generate the probabilities, we simply divide the data by the total samples and multiply by 100%:

Page 24 of 27

h_pdf

(h / 10000) * 100

h_pdf

9 32 24 18 9 6 1

If we plot the resulting data, we will have the probability density function from which we can readily
compute the probability of any Jordanian woman being of a certain height, Notice that a pdf is a
normalized histogram; that is; a histogram whose data is divided by the total number of samples.

figure("Units","pixels™, "Position", [300 300 800 400])

X = 1:8;

bar (x, h_pdf)

grid on

xticklabels({'<144', '145-149', '150-154', '155-159', '160-164', '165-169',
'170-174', '>=175'})

xlabel("Height of Jordanian Women (cm)")

ylabel("Probability")

36 T T T T T T

Probability

<144 145-149 150-154 155-159 160-164 165-169 170-174 >=175
Height of Jordanian Women (cm)

Cumulative Density Functions

What if we want to know the probability of a Jordanian woman being of height equal or less than 159
cm?

This means we have to add the probability that she might be less than 144cm, or between 145 - 149,
or between 150 - 154, or between 155 - 15; thatis 0.01 + 0.09 + 0.32 + 0.24 = 0.66 (66%).

But is there an easier way? We can compute the probability of a woman being of less than or equal
a certain height by using the cumulative density function (cdf). Remember that in cdf, each
probability is added to the cumulative sum before it. In MATLAB, we have the function cumsum
which we can use to generate a cdf from a pdf:

h_cdf = cumsum(h_pdf)

h_cdf

1 10 42 66 84 93 99 100

Page 25 of 27

To plot the cdf function, we can do the same thing:

figure("Units","pixels™, "Position", [300 300 800 400])

X = 1:8;

bar (x, h_cdf)

grid on

xticklabels({'<144', '145-149', '150-154', '155-159', '160-164', '165-169',
'170-174', '>=175'})

xlabel("Height of Jordanian Women (cm)")

ylabel("Cumulative Probability")

Cumulative Probability

<144 145-149 150-154 155-159 160-164 165-169 170-174 >=175
Height of Jordanian Women (cm)

Notice how the cdf function steadily approaches one. Also notice the cumulative probabilities are
shown on the x-axis. You can easily see that the probability of a Jordanian woman being of height
less than or equal to 159 is 66%.

References:

[1] Bulmer, M. G. 1979.Principles of Statistics. Dover.

Photo References:
https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php

https://en.wikipedia.org/wiki/Skewness

Page 26 of 27

https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php
https://en.wikipedia.org/wiki/Skewness

Experiment version 1.01
Last Updated December 3rd, 2021
Dr. Ashraf Suyyagh - All Rights Reserved

Revision History
Ver. 1.01

- For the Mesokurtic property, I added that a value very close to zero is
practically considered Mesokurtic

Page 27 of 27

University of Jordan
School of Engineering and Technology
Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Experiment 6 - Solving Linear Equations, Basics of Linear
Regression and Curve Fitting, and Interpolation

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 6 - Solving Linear Equations, Basics of Linear Regression and Curve Fitting, and

F T ST 0] = U1 0] o 1
Solving Linear EQUations iN MatriX FOMMNuiiiioiiiiiiiiiiee et s e e e e e e e e e e e e e e e nnnnneeneeeas 1
Representing Linear EQUAtiONS iN MATLABuuiiiiii ittt e e e e e e e e s nnnenereeeeeeeeas 1
SYSTEM Of LINEAI EXQUATIONSuuitiiiitiiiiiiiiiiiiiiiiiiiae s 2
[T TCTo Tl =T ST o] o IR 3
Least-Squares Fit Of @ StraigNt LINEccoiiiiiiiiiiiee et e e e e e e e e s nnnneaeeeeeeeeeens 6
Quantifying the GOOUNESS OF Fit........uuuuiuiiiiiiiiiiii e 8
MATLAB Built-in FUNCLIONS fOr REQIESSIONciiiiiiiiiiiiiiieiiiieieee ettt e e eeeeaeaeeeaeeeeeeeees 9
@1V 111 Lo USSR 10
T a1 (T oo F= 11 0] o NP RRTTRSPTP 20

Solving Linear Equations in Matrix Form

A linear equation can be represented as a vector made of the coefficients of its terms. A system of
linear equations can be represented by stacking the vectors of each linear equation on top of each
other forming a matrix.

Representing Linear Equations in MATLAB

A linear equation f£,(x) = a,x" + a, X" "' + ... + axx> + a;x + ap can be presented in vector form as
the coefficients vector [a,, a,_1, a,—s,....a», ai, apl-

So, the function fi(x) = x° — 3x* 4+ 2x° — x* + x + 2 can be expressed in MATLAB as:

cl = [11 '31 2) -1, 1, 2];

Page 1 of 24

while the function f(x) = 3x> + x* — 5 can be expressed in MATLAB as:

c2 = [1, @, 3, @, -5];

Notice that we first reordered the terms to start from the highest order x*+3x>—35, and the
coefficients for the missing terms x* and x are written as 0.

If we know the coefficients of each term, we can evaluate the function f(x) for anyx using the
MATLAB command polyval. The polyval command takes as input the coefficients vector and the
x at which we want to evaluate f(x). Suppose you want to compute f(2.5) in the previous

function. If you already have the coefficients vector, you can simply write:
y = polyval(cl, 2.5)
y = 9.9688

System of Linear Equations

A system of m linear equations with » variables can be expressed as:

apX + dp 1V + ...+ az+aw=aqp
bpx+b,_1v+ ..+ byz+bw=by

. o _ 1)
CpX +Cp1y+ ...tz +ciw =<y

dpx+dy_1y+ ... +duz+dw=dy

The above system can be expressed in generic matrix form as a matrix holding the coefficients of
the equations (the left-hand side), a vector of the unknowns x, y, ... z. w, and a vector that holds
the right hand-side. Notice that we moved all literals aq, by, ... co, dp to the right-hand side, so only
the unknowns remain on the left-hand side before we transformed the equations into matrix form.

Ap dp—1 - aj Y ag

b'r!. bn—] T bl Y bO
. x . =

Cyp Cp—1 c e 1 et Co

dn dn—l s dl w d{j

In order to understand the notation better, let us write a numeric example. Suppose we have a
system of three equations and three unknowns x. y. z like this:

x—2y+3z=
3y—x—z+6=0
S5z4+2x—5y=17

Page 2 of 24

Before expressing the system in matrix form correctly, we need to reorder the terms in all three
equations so that the variables are aligned. That is, the order of the variables x, y, z must be the
same in all three equations. Also, all literals must be moved to the right-hand part:

x—=2y+3z=9
—x+3y—z=-6
2x=5y+5z=17

We can express it in matrix form as:

1 -2 3 z 9
~1 3 1| x |y| = |-6
2 -5 5 2 17

Notice that we end up with two numeric matrices, one to the left holding the coefficients, and one to
the right holding the literals. In MATLAB, we write them as:

coef = [1 -2 3;
-1 3 -1;
2 -5 5];
literals = [9; -6; 17];

To find the values of the three unknowns and solve the system, there are two methods; the first is by
using the inverse (the order is important to satisfy the matrix equations requirements):

b = inv(coef)*literals

The other method is simply by using the backward division:

b = coef\literals

Linear Regression

Suppose that we have collected some measurements in the form of (x;. y), (x2. v2). (x3, ¥3) - . (Xms V)

These measurements could be coming of an engineering application like measuring the speed of a
car every 10 seconds. By observing the scatter plot of the discrete measurements, we might notice
that their shape can be approximated by a linear equation. We want to fit a straight line to this set of
paired measurements.

Page 3 of 24

figure

X = 10:10:60;

y = [60, 65, 55, 65, 63, 70];

scatter(x,y)

axis ([0 70 40 80])
80
75
70 -
65
60
55

50

45 -

40

We know that the equation of a straight line is:
)'”(I) =aix+dy

where q, is the slope of the line and g, is the x-intercept. Yet, even if we find this straight line that

fits the data, we know for sure that it will not pass through all the data points; some will fall below the
line, others above it. Therefore, the straight-line equation will have some errors.

We can also find multiple straight lines that will fit and approximate the data; we can draw any of the
four coloured lines and say it approximates the data. So, which one to use?

Page 4 of 24

80

far

(]

r

)

69 o

60 f o

55 0

a0

451

40 : ' : : : : '
0 10 20 30 40 50 60 70
Notice that for the data pairs (xi, y;), (x2, ¥2), (x3,¥3) ... (X, ym), WE @re going to create a line whose

equation is y,(x) = a;x+ay. So, for every data point x, we have its true value y and its
corresponding value y,(x) on the straight line.

80r
7B
Ve
70T Q0
v ya y (xs)r ,,a-E' :
o ni X&
65 Q o _— Y
yn(x3) — O
ye d_,.f-"’ﬂf n(xs)
60 | 0 | — s ye
.r—"'-—ﬂ' y'(xE)
55 1 " O
yn(x1) y3
50
T X1 Xz X3 Xs xs X8
40 * ' : ’ : : '
0 10 20 30 40 50 60 70

The difference between the true value y and its corresponding value on the straight line y,, is what
we call the residual error which we express asy — y, = ¢ (Notice the red lines in the above figure
which illustrate this error). Ideally, we want to find a line whose values have the least residual error

(difference) from all corresponding true values. That is, we need to minimize the sum of all absolute
errors Zle lei]. At the same time, we don't need one or few outlier points to affect the line. For

Page 5 of 24

example, we don't want the slightly distant point at (30, 40) to severely shift the straight line
downwards which we can arguably agree that it beautifully passes through the other points.

Least-Squares Fit of a Straight Line

One major algorithm used to fit a straight line to measurements is called the least squares fit or least
squares errors. The algorithm provides one unique line and given its name, also the least error. The
algorithm attempts to minimize the Sum of the Square of the Residual errors (SSR), also called Sum
of the Squared Estimates of errors (SSE):

SSR=SSE = 3" &= 3" (yi—aix— ao)’)

Analysing Eq.2, the measurements collected provide us with x;y;, yet we need to have the
coefficients a;, a;which define the line which constitute the two unknowns we need to solve for. We
need to have two equations to solve for g, «;. The derivation starts with differentiating the equation
twice, once with respect to a, and another with respect to «; :

dSSE

dag =2 ¥ (yi — ao — aix;) 3
63le = =2 (xi(vi — ap — a1x))) (4)

We already know that the minimum occurs when the derivative is zero, so we set both agﬁ,agSE
ap aj

to zero, then we collect the terms. We end up with a system of two linear equations with two
unknowns that we can easily solve.
ao=&—a1&=§—a1§ (5)
n n
_ n Z XiVi — fo Z_\/’i (6)
nyx—(Xxy

If we take a closer look at Eq. 6, we observe that ¢, depends solely on the measurement points; all
terms in the equation are related to x;, y;, and the number of observations n. Once we have the
value of g, then we can substitute it in Eq. 5 and solve for g, thus having the coefficients of the
straight line that best fits the data.

ai

Let us apply this equation to our first example where we had measurements of the car speed every
10 seconds. The points we have are (10, 60), (20, 65), (30, 55), (40, 65), (50, 63), (60, 70) where x;

denotes the sample time every 10 seconds, and y; denotes its speed in km/h. The best approach to

solve this by hand is to construct a table of these samples as shown below where we use it to
compute all the terms in Eqg. 6:

Page 6 of 24

2

n T Yi Tili I;

1 10 60 600 100

2 20 65 1300 400

3 30 55 1650 900

1 40 65 2600 1600
5 50 63 3150 2500
6 60 70 4200 3600

Sum 210 378 13500 9100
Mean 35 63

4 = 013500 — 210 x 378
6 x 9100 — 2107

=0.1543

Solving for ay:

ap = % —0.1543 x % = 57.5995

Therefore, the line which best fits the data is the one with the least SSR (SSE) compared to any
other line and is represented by:

y = 0.1543x 4+ 57.5995
We call the line resulting from this linear regression method the regression line.

We shall now plot this line with the scattered measurements on one plot:

figure
X = 10:10:60;

y = [60, 65, 55, 65, 63, 70];
scatter(x,y)

axis ([0 70 @ 90])

hold on

Xs = 5:0.1:65;
ys = 0.1543.*xs+57.5995;
plot(xs,ys)

Page 7 of 24

90

80

7m0

60

50

40 r

30r

20 1

Notice that the slightly far measurement at point (30, 55) did not shift the line towards it as much.

Quantifying the Goodness of Fit

What we learnt thus far is that the least squares method gives us the best fit it can given the
measurements observed. Yet, how can we determine that best fit straight line the algorithm was able
to provide is actually good enough? We need more criteria to tell us if this fit is good or not!

In Eq. 2, we defined the sum of the square of the residual errors SSR = SSE = 3" (yi — a1x; — ap)’

as the square of the error between each measured point and each predicted point on the regression
line. The problem with this measure is that with more points available, the more errors and SSR
(SSE) keeps getting larger. However, if we divide this value by the number of points n, then this is
called mean square error or MSE:

MSE = SSR _ SSE (7)

n n

There is also another goodness of fit metric called Root Mean Square Error (RMSE) which is simply
taking the square root of MSE:

RMSE = \/MSE ®)

For all three metrics, SSR (SSE), MSE, or RMSE, the closer the value to zero, means the less the
errors, and therefore it is a better fit. A perfect fit will have all these value compute to zero.

We also have another way to quantify the goodness of the fit which is called the correlation
coefficient, or simply r. It can be computed using the following formula:

. n Y (xiyi) — 2 xi) yi ©)

\/nz:x? —(Xx)* \/ﬂZ.‘f’?—(Z}’f)z

Page 8 of 24

From which we can compute the R-Square metric 2. For a perfect fit, > = 1, and the closer the
values we obtain to one means the better the fit.

To apply these metrics to the car example, we already found that the regression line equation is
y =0.1543x 4+ 57.5995, if we substitute the values of x; that we collected in the regression line

formula, we will get:

p = [0.1543, 57.5995];
yn = polyval(p, 10:10:60)

yn =
59.1425 60.6855 62.2285 63.7715 65.3145 66.8575

Compare these values to the actual measured car speed values:

disp(y)

60 65 55 65 63 70

To calculate SSR (SSE):

SSR = sum((yn - y).”2)
SSR = 88.3429

We calculate the correlation coefficient r:

n =6;
r = (n *sum(x.*y) - sum(x)*sum(y))/ (sqrt(n*sum(x.”2)-
sum(x)”2)*sqrt(n*sum(y.”2)-sum(y)”"2))

r = 0.5661
disp(r~2)
0.3204

It is worth to note that to find if the fit has high quality or not, we should not depend on the R-Square
alone, or the MSE alone, because sometimes R-Square could be close to one, yet MSE is way high
than zero. So, we should always consider both metrics.

MATLAB Built-in Functions for Regression

In this course, we only introduce linear regression. That is how to best fit linear lines. There are
many numerical methods which attempt to fit non-linear lines (e.g., quadratic, cubic, log, In, etc.).
MATLAB offers the command polyfit. This command can actually fit higher degree polynomials
and not only linear regression. It is internally built on the concept of least square errors.

To fit and plot a linear regression line in our previous example, we can use:

Page 9 of 24

X = 10:10:60;

y = [60, 65, 55, 65, 63, 70];
p = polyfit(x, y, 1)

p:

0.1543 57.6000
Notice how the result almost matches our previous results.

We can plot the measurements and linear regression lines using polyfit and polyval as follows:

figure

X = 10:10:60;

y = [60, 65, 55, 65, 63, 70];
scatter(x,y)

axis ([0 70 @ 90])

hold on

p = polyfit(x, y, 1)

p:
0.1543 57.6000

XS 5:0.1:65;
ys = polyval(p, xs);
plot(xs, ys)

Curve Fitting

In the previous section, we learnt to use linear regression to find the equation of the linear line that
fits the data with the least error possible. However, this technique only works when the data plot
resembles a linear plot. What if the points are similar to a quadratic equation? an exponential
equation? That is, they are non-linear. For sure linear regression will fail. There are many numerical

Page 10 of 24

technigues for non-linear regression but in this section, we will use MATLAB's curve fitting toolbox to
find the equation that best fits the data points we have instead of doing numerical methods.

In MATLAB, go to the Apps tab, and under Maths, Statistics, and Optimization you will find a
toolbox called Curve Fitting. Open this toolbox by clicking on it.

LIVE EDITOR INSERT FIGURE
R o
CSICIGE
Design Get More Install Package EAvORRE

App Apps App App

fue ¥ v 68 @8 @8 8 @8 ® @8 © =

= Curve Fitter Optimization PID Tuner Analog Input Analog Modbus System Signal Instrument ~ MATLAB Coder Application
1 P Dir G
€ »H E ﬁ 00 Recorder Qutput Gen... Explorer Identification Analyzer Control Compiler
P B Live Editor - D:\Geogle Drive - dr
=
5[+14 | Exp3MATLAB Fundamed M 47PS
-
t =
: E o
9 90 Contral Discrete-Time University of
Calculator Convolution Manchester ...
a0 L |MATLAB
= o)y T
n} EE 3 w &
Class Diagram Code Data Cleaner Profiler
80 - Wiewer Compatibilit...
MACHINE LEARNING AND DEEP LEARNING
50
5 B & s 5
W @& & B’ @ @& @ @ ¥
4 Classification Deep Metwork Deep Metwork Experiment Meural Net Meural Net Meural Net Meural Net Regression
Learner Designer Quantizer Manager Clustering Fitting Pattern Rec.. Time Series Learner
30+
q MATH, STATISTICS AND OPT\M\ZATIO“
c)) — &
.y e,
W~ o N e
10+ Curve Fitter Distribution Optimization PDE Modeler
Fitter

The tool is very simple to use. First, we need to select the data points for the x-axis, the y-axis (or
the z-axis if the plot is 3D). Make sure that the length of the data points for all axes is equal.

Let us use the previous data set of the car example:

X
y

10:10:60; % original measurments
[60, 65, 55, 65, 63, 70];

Then, from curve fitter window, click on Select Data, and from the new window, select the variable x

for the X Data, and the variable Y for the Y Data, then close the window. You can also give your fit a
name, say exampleFitl

Page 11 of 24

Open i
'ﬂﬂ % [Exclusion Rules i |
E Save Pelynomial | Exponential Fourier Gaussian

Select [Validation Data
* b4 Duplicate | Data

FILE DATA FIT TYPE
untitled fit 1

Fit name | untitled it 1 |

X Data | select v |
Y Data [select v |
Z Data | select v |
Weights [select v |

Notice that by default, the polynomial option was selected, and that the polynomial degree was set to
1, that is a linear line. So, the toolbox starts with linear regression.

Notice the results and the goodness of fits measures:

Page 12 of 24

CURVE FITTER

3 Open Update Fit %y Residuals Plot
EEZI QI @ Exclusion Rules E . Q
% Save = Pol ial L, ential - || (™) Auto
New Select Validation Data Siynomat | =xponentia N — | Export
v & Duplicate Data J () Manual Prediction Bounds |\None - | -
FILE DATA FIT TYPE FIT VISUALIZATION EXPORT
exampleFit1 Fit Options
) . Polynomial
Fit Plot i E 6 03 [<7] Poty
L I I I ' Degree E v
70 * yvs X 2 |:7|
exampleFit1 Robust | off v |
Center and scale Il

¢ Advanced Options

Read about fit options

Results

Fit name: exampleFit1

55 T b
10 5 20 25 30 35 40 45 50 55 60
X
Table Of Fits
:: Fit name :: Data i Fittype i R-square SSE ::DFE ;1 Adj R-sq :: RMSE
& |exampleFit1 |y wvs. x poly1 0.32044 28343 4 0.15055 4 5995

Linear model Poly1:
f(x) = p1*x + p2
Coefficients (with 95% confidence
bounds):
p1= 0.1543 (-0.1576, 0.4662)
p2= 57.6 (45.45, 69.75)

Goodness of fit:
SSE: 88.34
R-square: 0.3204
Adjusted R-=quare: 0.1505
RMSE: 4.7

In this toolbox, pl and p2 are the same as al and a0 that we calculated numerically. Also, notice the
values for SSE, RMSE, and R-square.

Now, let us try a set of non-linear points, for example the x and y pairs in the matrix Data:

Data

,_,
()

P P RPRPRRPOODOOOOOOOOO

.0000
.1000
. 2000
.3000
.4000
.5000
.6000
.7000
. 8000
.9000
.0000
.1000
. 2000
.3000
.4000

O OO OO O FrRr R FRPEFRPREFRPLELDNWWUV

.8955
.5639
.5173
.9790
.8990
.3938
.1359
.0096
.0343
.8435
.6856
.6100
.5392
.3946
.3903

Page 13 of 24

1.5000 0.5474
1.6000 0.3459
1.7000 0.1370
1.8000 0.2211
1.9000 0.1704
2.0000 0.2636];

X
y

Data(:,1);
Data(:,2);

Load the x and y values into the Curve Fitting Select Data Window. It is clear that Linear
Regression does not fit the data well. This is obvious given that the RMSE is much higher than zero
and R-Square is not close to 1.

CURVE FITTER

3 Open Update Fit &y Residuals Plot
EE:I Qz @ Exclusion Rules E . p
% Save Pol = E, ential | 7 || ‘@ Auto
New Select Validation Data EIfrE s cxponentia - | Export
v U3 Duplicate | Data L) () Manual Prediction Bounds |‘None - | -
FILE DATA FIT TYPE FIT VISUALIZATION EXPORT
exampleFit1 Fit Options

Fit Plot Polynomial
6F | P 1 Degree 1 v |
exampleFit1 Robust Off v |

sl] Center and scale]

+ Advanced Options

Read about fit options

Results

Fit name: exampleFit1

Linear model Poly1:
fix) = p1*x + p2

. * Coefficients (with 95% confidence
i bounds):
* pl= -1.789 (-2.427, -1.151)
2 p2= 3.007 (2.261, 3.752)

Goodness of fit
SSE: 1359
R-square: 0.6444
Adjusted R-square: 0.6257
RMSE: 0.8453

i | Fit name i Data s Fittype :R-square i SSE ::DFE = Adj R-sq ::RMSE
IQlexampleFiH YVs X |pol'_(1 |0.64443 13.592 19 0.62572 0.8458 2

Page 14 of 24

If you click on the Residual Plot button, it will plot the difference between each actual point y and
the corresponding point on the line y,,:

CURVE FITTER
ca T3 Open ; Update Fit || Residuals Plot |
=) & Exclusion Rules L . \4—‘; Sop” hesieuas T @
s - i il |7 ® At .
MNew ave Select Validation Data Polynomial Exponential - Lt Fit Export
- B4 Duplicate Cata) () Manual Plot | Prediction Bounds | None -] -
FILE DATA FIT TYPE FIT VISUALIZATIOM EXPORT
exampleFiti Fit Options
Fit Plot || Polynomial
6 F ‘ T T T T T T T T T T B ﬁ y
. VA
exampleFit1 Degree 1 W7 |
L]
- Center and scale]
2 | » Advanced Options
Read about fit options
-
0 1 ? = 7 -
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
X
Residuals Plot
IF T T T T T T T T T T
|—- exampleFit1 - residuals
-
2f 1 Results
Fit name: exampleFit1
JI‘-II = -
Linear model Poly1:
v 4 1 T fix) = pl1ox + p2
0 ry l T+ 1 + Coefiicients (with 95% confidence
l l J. l l l l l bounds):
! | | [| | | | | ! pl= -1.789 (-2.427,-1.151)
2= 3.007 (2.261, 3.752
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2 L (:)
X Goodness of fit:
- SSE: 13.59
Table Of Fits R-square: 0.6444
Adjusted R- : 0.6257
iFitname |iData [iiFittype |iiR-square |ii SSE DFE GAdjRsq |iRMSE e T
& |exampleFit1 (ywvs. x poly1 0.64443 13.592 19 0.62572 0.8458 2

Notice how the residual errors are quite large for a bad fit.

Page 15 of 24

Let us try to use a quadratic fit using polynomial of degree 2. Even though R-Square has increased
from 0.6443 to 0.8637, and the RMSE decreased from 0.8458 to 0.5379. It is clear we can do better.

CURVE FITTER

3 Open) Update Fit té! Residuals Plot
If|]:| ﬁ & @ Exclusion Rules — @
5 - ; ; (&) Aut
Mew ave Selact Validation Data Polynomial | Exponential - ute Export
v | i Duplicate Data () Manual Prediction Bounds | None b] -
FILE DATA FIT TYPE FIT VISUALIZATION EXPORT
exampleFit] Fit Options
i Polynomial
Fit Plot . y
6 P 1 Degree 2 v |
exampleFit1 Robust Off v |

Center and scale]
+ Advanced Options

Read about fit options

Reasults

Fit name: exampleFit1

Linear model Poly2:
fix) = p1*x*2 + p2*x + p3
Coefiicients (with 95% confidence
bounds):
pl= 1.933 (1.179, 2.688)
p2= -5.G55 (-7.218 -4.092)
p3 = 4.231 (3.556, 4.906)

Goodness of fit:

SSE: 5209

R-zquare: 0.8637
Adjusted R-square: 0.8486

X
Table Of Fits
= Fit name it Data Fit type R-square 2 SSE ' DFE = Adj R-sq I RMSE
% |exampleFit1 [y vs. X poly2 086374 52086 13 0.2436 053793

RMSE: 0.5379

Page 16 of 24

What if we try to use a cubic equation by using a polynomial of degree 3?

CURVE FITTER

T3 Open i Update Fit 5y Residuals Plat
Ifl:ll:I & @ Exclusion Rules ! S._‘ — B
% Save ~ Pol ial E tial (®) Auto
MNew Select Validation Data olynomia ¥panentia - Export
v U4 Duplicate Data () Manual Prediction Bounds | None hd] d
FILE DATA FIT TYPE FIT WVISUALIZATION EXPORT
exampleFit1 Fit Options

. . Polynomial
Fit Plot E Y

] Degree G~
exampleFit1 Robust Off hd |

] Center and scale]

» Advanced Options

Read about fit options

>3

Results

Fit name: exampleFit1

Linear model Poly3:

: . () = p1*x"3 + p2*x"2 + p3*x + p4
* 1 * pr . Coefficients (with 95% confidence
0+ e N bounds):
' ; ; ; . t ; ; ; ; pl= -2184 (-3.154 -1.214)
0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2 p2= $.485 (5532, 11.44)
X p3= -10.77 (-13.28, -8.265)
pd = 4978 (4413, 5.542)
Table Of Fits Goodness of fit;
- . - o . . - o .| SSEI2237
::Fltl'lﬂl"l'le ::Dala ::Flttype ::R-square gd SSE ::DFE ::Ad] R-sq ::RMSE ::# R—Square: 0.0415
; Adjusted R-square: 0.9312
& |exampleFit1 |yvs.x poly3 094148 22369 17 093116 0.36274 4 RMSE. 0.3527

Page 17 of 24

Let us change our equations from polynomials to exponentials, and try to change the number of
exponential terms from 1 to 2:

When we have one exponential term, we don't have much change in terms of goodness of fit
compared to the cubic equation:

CURVE FITTER

T3 Open p Update Fit g Residuals Plot
I:Il:ll:I i & @ Exclusion Rules E ° @

% Save > || (@ Auto

New v Sl Validation Data Polynomial | Exponential - Export
* 54 Duplicate | Data () Manual Prediction Bounds | None -] -
FILE DATA FIT TYPE FIT VISUALIZATIOMN EXPORT
exampleFit1 Fit Options
. Exponential
Fit Plot [t | Expo
Niw : . . . : . T T T] Equation aexp(b™x)
. * yus X
exampleFit1 Number of terms 1 v |
- Center and scale]
+ Advanced Options
Read about fit options
4
=3
2 L
Results
Fit name: exampleFit1
1 L
General model Exp1:
fix) = a*exp(b*x)
Coefficients (with 95% confidence
b bounds):
a= 5123 (4.556, 5.691)
b= -2478 (-2.916, -2.041)
X
Goodness of fit:
- SSE: 2217
Table Of Fits R-square: 0.942
e . e o] Adiusted R-square: 0.9339
i Fit name i Data :: Fit type ;i R-square i SSE ::DFE :Adj R-sq RMSE H#| RMSE- 03416
& |exampleFit1 |y vs. x expl 0.942 22173 19 093894 0.34161 2

Page 18 of 24

However, if we use two exponential terms, notice how beautifully the curve fits the data. Also notice
that R-Square is 0.9961 and very close to 1, while RMSE is 0.09322 and much closer to zero than
before.

CURVE FITTER

3 Open -] Update Fit &y Residuals Plot
I:II:Il:I & @ Exclusion Rules E . |£|>
ﬁ Save - Polvnomial | E tial || ™| @ Auto
New Select [Validation Data olynamial | Expanentia - — | Export
* U Duplicate | Data A O Manual Prediction Bounds |‘Nc>ne - | -
FILE DATA FIT TYPE FIT VISUALIZATION EXPORT
exampleFit1 Fit Options
. . Exponential
Fit Plot 3 ji e E DO & S s | Expe
o T T T T T T T T T — . S
* YVS X Equation crexp(d®x)
exampleFit1 ——
Number of terms |2 v |
5r Center and scale 1
+ Advanced Options
a4t Read about fit options
>3l
2 -
Results
Fit name: exampleFit1
1 L
General model Exp2:
f(x) = a*exp(b*x) + c*exp(d*x)
Coefficients (with 95% confidence
ot i bounds):
' ; . ; ; ; ; . ; ; ' a= 3.007 (2549, 3.465)
0 0.2 04 06 0.8 1 1.2 14 16 1.8 2 b= -10.59 (-13.48, -7.692)
X c= 2.889 (2.46, 3.318)
d= -1.4 (-159,-1.21)
Table Of Fits Goodness of fit
- . - . o . o o . SSE: 0.1477
: Fit name i Data L Fittype i R-square i S5E i1 DFE i Adj R-sq i RMSE i R-square: 0.9961
: Adjusted R-sguare: 0.9855
& |exampleFit1 |y vs. x exp2 0.99614 0.14772 17 0.99545 0.093218 4 e e

Of course, we can even tune the fit for better results by enabling the advanced options and selecting
more parameters like certain algorithms among others. But this is out of scope of this lab course.

Now, in the previous fit, notice that the results returned four parameters a. b, ¢, and d . Also note that
the equation is given as a*exp(b*x) + c*exp(d*x), so we can write this in MATLAB:

f = @(x) 3.007*exp(-10.59*x)+ 2.889*exp(-1.4*x)

f =
@(x)3.007*exp(-10.59*x)+2.889*exp(-1.4*x)

and we can find any value on this curve by simply calling the function, for example, to find f(1.75),
write:

£(1.75)

ans = 0.2493

Page 19 of 24

Interpolation

In engineering and scientific applications, we collect measurements from sensors or other
experiments. These measurements are discrete in nature; that is, they are sampled at non-
continuous points in time (e.g., every 10 ms, second, day, etc.). Sometimes, we might have an
erroneous measurement (possibly due to high noise) or a missing measurement (e.g.sensor failure).
As such, we want to predict what the original value was and replace the erroneous or missing value.
At other times, we might be interested in predicting the value for a point of time that we did not take
a measurement for.

Suppose we are measuring the speed of a car every ten seconds for the duration of one minuet
similar to the car example we have seen already. What if we wanted to predict the speed of the car
at the 55" second? Or the 43 second? These are values that we did not take a measurement for.

You could use the regression techniques we just learnt to come up with the regression line
(polynomial or otherwise) to find a formula for the speed, then apply f(43):

X = 10:10:60;
y = [60, 65, 55, 65, 63, 70];
p = polyfit(x, y, 1);

ys = polyval(p, 43)
ys = 64.2343

In the above example, we applied linear regression because we noticed through the scatter plot that
a straight line better fits the data.

But what if you had measurements described as this:

figure

X2 = 1:1:10;

y2 = [2, 5, 8, 15, 19, 17, 14, 13, 10, 7];
scatter(x2,y2);

And you want to predict the value at 3.25? In this case, you might want to connect straight lines

between the points f(3) and f(4), and compute the slope of this line segment, then write the
equation of the line, then substitute f(3.5) in the line equation.

hold on
plot(x2,y2)

Page 20 of 24

1 2 3 4 5 6 7] 9 10

Notice that we were not able to use linear regression on the entire points to predict the value
because the scatter as a whole does not represent a linear function. Instead, we took two adjacent
points (3, 8) and (4, 15) and connected them with a line and used the line equation to find the value
atx = 3.5.

In a similar fashion, MATLAB offers the function interpl that interpolates data at certain data
points. To predict the value of 3.5, we need to only pass the entire original measurements, and the
data point we want to interpolate at:

interpl(x2, y2, 3.5)
ans = 11.5000

You can also interpolate at many points at once by passing a vector of points:

interp1(x2, y2, [3.5, 6.75, 8.25])

ans =
11.5000 14.7500 12.2500

Let us compare the output of the interp1 function for the car example with the output we got using
polyfit and polyval:

interpl(x,y, 43)

ans = 64.4000

Why are the two values different? That is, the interpolated result using the regression line was
64.2343 and using interpl is 64.4. Let us examine the plot to illustrate how they differ. The interpl
command connects each successive two points with a line and uses the equation of that line piece

Page 21 of 24

to find the interpolation. The regression line is a line that approximates all points together and thus
has a different equation.

figure

x = 10:10:60; % original measurements

y = [60, 65, 55, 65, 63, 70];

scatter (x,y)

hold on

p = polyfit(x, y, 1); % finding the regression line 1st-degree polynomial
yn = polyval (p, 10:0.1:60);

plot(10:0.1:60, yn)

plot (x,y)

axis ([@ 70 50 75])

legend('Car speed', 'Regression Line', 'Piece-wise interpl')

75
Car speed
Fegression Line
Fiece-wise interp1
mr
85 | o) o
60 Q
551
5ﬁ i i i i i i i
0 10 20 30 40 50 60 70

In either of the two previous cases, when we examine the previous figure, we can easily see that
connecting the points using straight line or regression line does not best fit the function or might not
offer the best interpolated value. We could have used a smoother fit which will capture the actual
figure more accurately. This will then yield better predictions and interpolations.

MATLAB provides the command spline which performs cubic-spline interpolation instead of linear
interpolation. It has the same syntax as interpl :

Page 22 of 24

ys = spline(x2, y2, 3.5)
ys = 11.3279

You can also interpolate at many points at once by passing a vector of points:

spline(x2, y2, [3.5, 6.75, 8.25])

ans =
11.3279 14.5459 12.4709

To visualize how spline works, we can plot the smoothed curve:

figure

x2 = 1:1:10;

y2 = [2, 5, 8, 15, 19, 17, 14, 13, 10, 7];
scatter(x2,y2);

hold on

xnew = 1:0.1:10;

ynew = spline(x2, y2, xnew);

plot(xnew, ynew)

18} .f/rr b
16|
14} e
12 w\x
10}
st [\
5 //; 8
| »
2)
1 2 3 4 5 6 7 8 s 10

Page 23 of 24

Experiment version 1.1

Original Experiment December 17th, 2020
Last Updated April 8th, 2022

Dr. Ashraf Suyyagh - All Rights Reserved

Revision History

Ver. 1.1

- Corrected the notation of the linear equation and the linear system and made
it easier to understand.

- Replaced the plots and figures of the linear regression section with new ones
and simplified the discussion
-Removed some of the previous metrics of the goodness of fit and introduced
simpler ones. Removed the difficult interpretation of the some of these
statistical metrics.

- Added a new section on the curve fitting toolbox to cover non-linear
regression and other algorithms in simple manner.

- Added a clarification on why interpolation using the regression line and
using interpl function can be different.

- Removed interp2, interp3, and intern commands.

Page 24 of 24

University of Jordan
School of Engineering and Technology
Department of Computer Engineering
Practical Numerical Analysis (CPE313)
Experiment 7 - Error Analysis and Optimisation

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 7 - Error Analysis and OptimiSatiON............cuueeeiiiiiiiiiiiree e e e e e e e e e e e e e sneeeeeees 1
o] Y = 1A RSO 1
Difference between AcCCUracy and PreCiSIONuuiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee e e eeeeeeeeeeeeseeeeeeereeeeeeeees 2
(Y0101 a0 (o] 1 I =t (o] €T TP PPPT R TOUPTPPPRPT 2

F N 010 U1 (S =Y (o] £ T PP PP PR PPPRR 3
Relative Errors and the Stopping CrHLEIONvviviiiiiiiiiiiieieeeeeeeeeeeeeeee ettt eeeseeeeeeeees 3
Example: Maclaurin series expansion of e"x and Relative EITOrScuuvvvvveeiiveiiiieeeeeiieieeeeenenene, 4
Introduction - What iS OptimiZatiON?.........uueeiiiie e e e s e e e e e e s e e e e e e e e s e reeeeeeeennnneeenees 5
Single Variable OptimiZatiON...........oii i e e e e e e e s e e e e e e e e e nnnnneneeeeas 6
Multi-variable OPtMIZALIONoiiiiiiiiiiiiie ettt ettt e e e e e eeeeeeeeeeeeeeeeeeseseeneeees 6
THe GOIAEN NUMDET ...ttt e et e e et e e et e e e e e aneeeeeanaes 7
Overview of the Golden-Section Numerical Search (A Bracketing Method)............cccccceeeeiiiiiiinnnnn. 8
Detalls of the Golden-Section Search Method through an Exampleccccccoiiiiiiiiiinee, 8
What about the MaxXimum POINIS?ciiiiiiiiiee et e e e e e e e e e s e eeeeeeennnnees 14
MATLAB Optimization BUilt-IN FUNCLONScooiiiiiiiiiiiee ettt e e e e e e e e e snnneeeeee s 14

Error Analysis

In numerical analysis, we learn the basics of how computers solve mathematical problems such as
finding roots of functions, finding minima and maxima, how they integrate and differentiate functions.
Numerical analysis is the basis upon which the math and specialized libraries in programming
languages are implemented. In fact, the MATLAB commands we will introduce are written using
numerical techniques.

In math courses, we learn about exact solutions for many problems that yield an exact answer.
However, numerical analysis is based on approximating solutions to engineering and scientific
problems. We get very close to the answer but not necessarily the exact answer. Consequently, with
approximations there are inherent errors, and these errors must be well understood, and if possible
reduced. In the first part of this lab, we will present the major error analysis concepts.

Page 1 of 16

Difference between Accuracy and Precision

Engineers and scientists often deal with errors related to either calculations or measurements.
These errors can be characterized with regard to their accuracy and precision. Accuracy refers to
how closely a computed or measured value agrees with the true value, i.e., the actual value.
Precision refers to how closely individually computed or measured values agree with each other.
The following figure illustrates the concepts of accuracy and precision by using a marksman target
board. Suppose that the true value is the centre of this target board (in red):

1. In the first case, the collected values are neither precise (they are sparse) nor true (away
from target).

2. In the second case, the values are closer to the true target (accurate), yet not in agreement
with each other (not precise).

3. Inthe third case, we can see that the values are precise, as they agree collectively with each
other, however, they are not necessarily on target.

4. In the fourth case, we can see that the values are precise, as they agree collectively with
each other and also very close to the true value.

Not accurate, Accurate, Precise, Accurate and
not precise not precise not accurate precise
1 2 3 4

You can always plot the collected measurements and infer if they are precise and/or accurate. Given
that most of our measurements are discrete in nature, it would make sense to use a discrete plot
such as scatter.

Roundoff Errors

Numerical roundoff errors arise because digital computers cannot represent floating-point numbers
accurately. This is due to the standards used to represent floating point numbers (IEEE 754
standard) and the hardware circuits that implement these standards. This is why in some languages
we have single-precision type (32-bits: float) or double-precision type (64-bits: double) where
doubles have a wider range and are more accurate than floats. MATLAB by default uses the double-
precision format. However, even this format can result in roundoff errors, for example:

1000.43 - 1000
ans =
0.429999999999950

or

0.7642 - 0.7641
ans =
9.999999999998899e-05

Page 2 of 16

The previous two error cases are called subtractive cancellation that results when we subtract two
close numbers. Even though the roundoff error can be negligible, yet its cumulative error can result
in erroneous results. For example, we know that summing the small humber 0.0001 ten thousand
times will result in the value one:

s = 0;
for i = 1:10000
S =S + 0.0001;
end
disp(s)

0.999999999999906

However, we notice that the result is clearly imprecise. This is because the number 0.0001 cannot
be precisely expressed in binary format. There is no solution to roundoff errors except by a change
in the design of a new standards and new computer circuits that have more bits to represent
numbers more precisely.

Absolute Errors

In mathematics, if we already know the true value, then we can measure how any other value or
an approximation of the true value is away from the exact value. Because we know the true value,
we call this difference/discrepancy the true numerical error. It is also known as the absolute error E,

and is given by:
E, = True Value — Approximation (1)

For example, we know that 7 has infinite digits: 3.1415926535 ... but we simply approximate it as
3.14. In this case:

E; =3.1415926535... — 3.14 = 0.0015926535...
Most of the time we are interested in the true percent error designated as:

¢ = True Value — Approximation % 100% ©
True Value

which in our case of 7 will be:

3.1415926535... — 3.14
- 100% ~ 0.05%
€ 31415926535 % ‘

In numerical analysis, we do not even know the true value to begin with! In fact, the whole purpose
of numerical methods is to find this value. So how are we going to know if the value that the
numerical method comes up with is precise and accurate relative to the true answer. We are not
able to use the absolute error criterion for obvious reasons; thus, we shall introduce a new one
called relative errors.

Relative Errors and the Stopping Criterion

Page 3 of 16

In numerical methods, we often go through multiple iterations using loops, and in each loop, we get
a value that gets closer and closer to the true value (the answer). Basically, using equations that
describe the problem, we get the first approximation in the first loop iteration; then we use the first
approximation in the next iteration to get our second approximation, which in turn we use to get a
third approximation and so on.

Now, given that we do not know the true value and we cannot calculate the absolute error, we use
the relative error instead. This is the error between the answers that we get between each two

successive approximations. It has a similar generic equation like the absolute error. The relative
error ¢, is calculated as follows:

Present Approximation — Previous Approximation
= Lr ylous _Zpp x 100% 3)
Present Approximation

a

Simply put, we measure ¢, between the second and first iterations, then between the third and

second, then between the fourth and third. But how many iterations are we going to go over? We
have two ways to stop the loop:

1. A fixed number of iterations, say we fix the loop to go for 100 or 200 iterations.
2.Use a stopping criterion

The stopping criterion uses an error threshold ¢,. In each iteration, we check if the computed relative
error ¢, becomes less than this threshold ;. If so, we exit the loop and the last answer is our best

approximated answer; otherwise, we keep going into the next iteration. We use the absolute value of
€, in this check:

leal < € 4

But what is this error threshold ¢,? How do we get it?

e Either you specify that you need your approximation to be correct to for example within
0.00001%, or
e You want the approximation to be correct to at least n significant digits, and we calculate ¢,

accordingly as:
€= (0.5% 10°""% ®)

So, if we want our final approximation to be correct for the first five significant digits, then
e, = 0.5x 10%79% = 0.5 x 107 = 0.0005%

Example: Maclaurin series expansion of e”x and Relative Errors

To illustrate this concept, we shall use the Maclaurin series expansion of ¢*. The value of ¢* can be
approximated as:

2 3 n

: X7 x X
2t = X+—+=—=+..+— 6
1+1‘+2+3!+ +n! (6)

Page 4 of 16

Suppose we want to find the value of ¢, we can approximate the answer using the Maclaurin

series by substituting x by 0.5 and adding the terms together. But how many terms do we need? Two
terms? Three terms? Nine terms, or a hundred terms? Suppose we do not know that true value of ¢*
and that we want to stop when we find an answer whose error is less than ¢, = 2%.

Initially we approximate the value of ¢ by using the first term only, then we approximate it using

the second term. We calculate the relative error between these two approximations, and we get
€, = 33%, which is way higher than e, = 2%.

Next, we approximate the value of ¢’° using three terms, then we calculate the relative error
between the third and second approximations and we get ¢, = 7.69%, which is higher than ¢, = 2%.
We continue in this order until we reach an approximation using six terms. When we calculate the
relative error between approximations using the six and five terms, we get ¢, = 0.0158%, which is
less than ¢, = 2%, and therefore we can stop the approximation.

No. Terms Substitution Result €
1 1 1 -
2 1+0.5 15 33.3%
3 1405 + 05 1.625 7.69%
4 1+ 0.5 1.645833333 1.27%
5 1+0.5+* 2 =t 1 + o 1648437500 0.158%
6 1+0.5+ % + j’ + :: + %2 1648697917 0.0158%

It is worth noting that in order to have a precise and accurate result, we need to use infinite terms
which is not practical. We always stop the computation short at some term when we reach an
acceptable error margin. Because we stopped at few terms, we say that we truncated the number of
terms, and in this case, this type of approximation error is called the truncation error.

In the implementation of any numerical method, the total error results from both roundoff errors
and/or truncation errors. For most engineering and scientific applications, we must settle for a close
value of our approximation within an acceptable error threshold. To reduce (but not necessarily
eliminate) total errors

Introduction - What is Optimization?

In engineering, scientific, and economic applications, we normally use terms like highest
performance, least overhead, most gains, minimum cost, maximum efficiency, highest speed,
highest growth, etc. Therefore, we are interested in the points at which the measured or collected
data is higher or lower than neighbouring data. When we plot these points (or functions) we can
observe from the plot when the minimum or maximum point is located.

Sometimes, the function has one minimum or one maximum point, and we call these functions
unimodal. Other functions have shapes like hills and valleys going up and down and can have

Page 5 of 16

multiple high points or multiple low points. We call these functions multimodal, and these points
local maxima and local minima points. If we are referring to either point, we call them local
optima. In such cases, we are mostly interested in the best case which we call the global optimum
which is the point the yields the best solution for the problem understudy (i.e., lowest cost, highest
bandwidth, etc.). The following figure illustrates an example of local and global optima points for a
one-dimensional problem (f(x)). Optimization is merely finding the points at which our function has
a global maximum or minimum value.

f(x)
Local
Global / maximum
maximum
X
\CLLocal
Global minimum
minimum

Single Variable Optimization

Of course, we cannot rely on plots to find the local or global optima and we need a systematic
mathematical way to do so. From calculus courses, we know that at either the local or global
optimum points that the slope of the tangent line touching the point is 0. That is, f'(x,,) =0.
Intuitively, we need to differentiate the function f(x) and find the roots of f'(x), and these roots will
be the optimum points. However, this still does not tell us if the said point is a maximum or a
minimum, we only know that it is an optimum. Again, calculus comes to our aid. By taking the
second derivative of the function f“(x), then substituting the values x,, which are the roots we

found in the earlier step, then we can determine if the point is a minimum or a maximum by:

[(xgpe) > 0, then the pointis a minimum.

1" (xgpr) < 0, then the point is a maximum.

(S =0 .
f(x)) < 0~~~y Maximum

fx) =0

Root

f@=0
Minimum f(x) >0

Multi-variable Optimization

Page 6 of 16

Optimization can also be done in two or more dimensions. For example, the function f(x,y) could
possibly have the shape shown in the following figure. Notice that the function has multiple hills and
valleys. The peaks and lows of these hills and valleys represent local maxima and minimas, and the
highest peaks and lowest valleys represent the global maximums and minimums. We have already
learnt how to use different types of 3D plots to draw such graphical representations.

In this course, we are mainly interested in one-dimensional (single variable) optimization. Yet, we will
present MATLAB built-in functions for both one- and multi-dimensional optimization.

The Golden Number

Mathematicians have been fascinated by many numbers across history; for example: prime
numbers, =, and ¢ (The Golden number). The golden number has been known since the ancient
Greeks times and the mathematician Euclid of Alexandria (u+x8)) (the father of geometry) devised a
geometric way to find it. It has aesthetical quality and is associated with natural beauty when

observed in nature. The Golden number ¢ has the value %(1 + \/5) = 1.6180889.... This number

has been found to govern many naturally occurring shapes or patterns in nature as the following
figure illustrates:

Page 7 of 16

Overview of the Golden-Section Numerical Search (A Bracketing Method)

The Golden-Section search method is a bracketing method. This means it works over an interval
(bracket) and finds the minimum value within this interval. The Golden-Section search divides the
function into intervals that contain the minimum point, then starts looking for the minimum point by
making an assumption (approximation). Based on this approximation, it updates the ends of the
interval and makes a new assumption. It compares the current approximation with the previous
approximation and computes the relative error, and we compare it to the stoppage criterion. If the
relative error is larger than the stoppage criterion, it keeps iterating, once it is smaller, it stops, and
the last approximation is the final answer for the optimal point.

Details of the Golden-Section Search Method through an Example

The golden section method can only determine the minimum points of a function. We start each
iteration with an interval [x;,.,. Xupper] iNSide which we know that we have a minimum. As we said,

an interval known to have a single minimum (or maximum) is called unimodal. The algorithm starts
with finding two points inside the interval x; and x, based on the Golden number ¢ that we have

already seen. The values of x; and x, are computed as follows:

d= ((]5 - 1)(xupper - xl’awer) (7)
X1 = Xigwer +d (8)
X2 = Xupper — d (9)

Suppose we have the function f(x) = x> — 2x that we graphically can tell it has a minimum at x = 1
in the range [-2, 2], so for this function d = 2.4723556, and therefore x; =0.4723556 and

x2 = —0.4723556.

Page 8 of 16

= 3l \,

N[fe2) = 1.16783

-
o

\
“J

1r x2 |\»._\
\H' \\\
0r ™~
g

:/:d

‘f(xn: -0.72159 ‘

e .
hT -

o

e—

-2 -1.5 -1

Klower

The numerical method proceeds

-0.5

by

0.4 1 15 2

computing f(x;) = f(0.4723556) = —0.72159

and

f(x2) = f(—0.4723556) = 1.16783, and remember that we are looking for the minimum value, so we

do the following comparisons:

e If, as in the figure, f(x;) < f(x2), then we assume that f(x,) is the approximate minimum in
this iteration, and all values to the left of x,, from xj,,., t0 x> will be ignored because they do
not contain the minimum. We update the interval such that x, becomes the new x,,., for the

next iteration.

o If f(x2) < f(x1), then we assume f(x;) is the approximate minimum in this iteration, and all
value of x to the right of x;, from x, to x,,,., will be ignored. We update the interval such
that x; becomes the new x,,,., for the next iteration.

Page 9 of 16

f(x)

X

The new interval is NOW [xjoyer, Xupper] = [[0.472356, 2].

In the next iteration, the distance 4 is recomputed based on the new interval [xuer, Xupper] =
[-0.472356, 2], and we get d = 1.528136. Therefore, the values for:

x1 = —0.472356 + 1.528136 = 1.05578
x=2—1.528136 = 0.471864

The numerical method proceeds by
f(x2) = f(0.471864) = —0.721073

computing

f(x1) = f(1.05578) = —0.996889

and

Page 10 of 16

1 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

| = |

If, as in the figure, f(x|) < f(x2), then we assume that f(x,) is the NEW approximate minimum in
this iteration, and all values to the left of x;, from x,,., t0 x» will be ignored because they do not
contain the minimum. We update the interval such that x, becomes the new x,., for the next
iteration.

f(x)
4

-1F T —

. . 2
x | |

Also, now that we have two iterations, and old approximate and a new approximate, we can
calculate the relative error. Because we need to compare it to a stoppage criterion in order to know

Page 11 of 16

when to exit the loop. We already know the equation for the relative error from a previous section.
However, mathematicians came up with new relative error formulae for the golden search algorithm:

€4 = (24) _ 3)‘ (Xupper - XJ’uwer) x 100% (10)
Xopt
or
(xu,uper - -xiuwur) ,
X,

opt

where x;,,,., and x,,,.. are the ones used in each iteration.

We compute ¢,, based on the second equation and we find that ¢, = 323.6%, a huge error, so we

need to continue with more iterations.

The new interval is NOW [xjyyer. Xupper] = [+0.472356, 2].

In the next iteration, the distance is recomputed based on the new interval [xiuer. Xupper] =
[+0.472356, 2], and we get d = 0.944524. Therefore, the values for:

x; = +0.472356 + 0.944524 = 1.416388
x2 =2 —0.944524 = 1.055476

The numerical method proceeds by computing f(x;) = f(1.416388) = —0.826621 and
f(x2) = f(1.055476) = —0.996922

2r h]
\ | f{xz) = -0.997 | | f{x1) = -0.826

L -
N
or S~ A
0 0.5 1 1.5

-2 -1.5 -1 0.5 2

X

| X1 || Xupper |

| Klower | | X2

Page 12 of 16

Notice now that f(x;) < f(x;), SO we assume f(x;) is the approximate minimum in this iteration,
and all value of x to the right of x,, from x; to x,,,., will be ignored. We update the interval such
that x; becomes the new x,,,., for the next iteration.

8 T T T

N

gaf \

“| \ f(xz) = -0.997 flx1) = —0_.826
o ||

\\\
0r ‘“‘\\ A
- .
af T-%_ — |
] 0.5 1 1.5

-2
-2 1.5 -1 05 . 2
. l

| Xlgwer | | Xupper |

We compute ¢, based on the second equation and we find that ¢, = 200.1% , a huge error, so we

need to continue with more iterations.

The new interval is NOW [xyyer, Xypper] = [+0.472356, 1.416388].

The following table summarizes the first 10 iterations of golden search algorithm. The value in bold
represents the pair (x, f(x)) at which the minimum occurs in the iteration. We copy the value of x as
X, 10 denote that this is the optimal estimate thus far in this iteration.

Tlower TUpper d Ty To flz1) f(z2) Topt £a
1 -2 2 2472356 0.4T72356 -0472356 -0.721591 1167831 0.472356 1170.2%
2 0472356 2 [.528136 1.055780 0471864 -D.996889 -0.721073 1.055780 323.6%
3 0.471864 2 0.944524 1416388 1.055476 -0.826621 -0.996922 1.055476 200.1%

4 0471864 1416388 0583800 1.055664 (.832589 -0.996902 0971973 1.055664 123.6%
5 0.832589 1416388 0360840 1193429 1.055548 0962585 -0.996914 1.055548 T6.4%

6 0.832589 1.193429 0223031 1055620 0.970397 -0.996906 -0.999124 0.970397 51.4%
7 0.832589 1.055620 0.137853 0.970442 0917767 -0.999126 -0.993238 0.970442 31.8%
& 0917767 1.055620 0.085205 1.002972 0.970414 -0.999991 -0.999125 1.002972 19.0%
9 0970414 1.055620 0.052665 1023079 1.002955 -0.999467 -0.999991 1.002955 11.7%

10 0969896 1.023079 0.032872 1.002768 0990207 -0.999992 -0.999304 1.002768 7.3%

Notice that the result is slowly approaching the minimum value which is 1.

Page 13 of 16

What about the maximum points?

When we introduced the golden-search bracketing method, we said that this numerical method is
used to get the minimum value of a function in a certain interval. We can readily use the golden
search to get the maximum by a simple twist; when we multiply the function by —1, we simply flip
the function upsides down, so when we search for the minimum of — f(x) (orange line), then we are
looking for the maximum of f(x) (blue line) as the next figure illustrates:

400 T T T T T

300 [—-1*{x1 |

200 7

1001 1

A00 -
200 F N

-300 [7

-4DD i i i i L
6 -4 -2 0 2 L G

MATLAB Optimization Built-In Functions

MATLAB's fminbnd function takes as an input a function for which you want to find the minimum,
and an interval for that function to search in between. To apply fminbnd on our previous example:

y = @(X) Xx."2 - 2.%x;
[x_opt, y_x] = fminbnd (y, -2, 2)
x_opt =

1

The function fminbnd uses hybrid techniques to find the minimum within an interval. It is mainly
based on the golden search we described above, and another technique called the parabolic
interpolation. We can see the iterations MATLAB uses and the numerical method by enabling some
options:

Page 14 of 16

y = @(x) Xx.72 - 2.%x;
options = optimset('display’, 'iter');
[x_opt, y_x] = fminbnd(y,-2, 2,options)

Func-count X f(x) Procedure
1 -0.472136 1.16718 initial
2 0.472136 -0.72136 golden
3 1.05573 -0.996894 golden
4 1 -1 parabolic
5 1.00003 -1 parabolic
6 0.999967 -1 parabolic

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
x_opt =

1

y_Xx =
-1

If you have a multi-dimensional function such as f(x, y) and you need to find its minimum value
using MATLAB, then you can use the fminsearch command. You can specify if you need the
minimum near a specific point, or within any interval. If you attempt defining your function as follows,
it will fail. This is because fminsearch passes one variable to the function, whereas it takes two
variables:

f=@(x,y) 100*(y - x"2)"2 + (1 - x)"2
[x,fval]=fminsearch(f,[-0.5,0.5])

To circumvent this issue, we design the function such that it accepts one value, but we pass a vector
denoting, X, y, z, etc.

fun = @(m)100*(m(2) - m(1)*2)"*2 + (1 - m(1))"2; %sm(1l) is x, m(2) is y
x0 = [-1.2,1];
x = fminsearch(fun,x0)

1.000022021783570 1.000042219751772

Page 15 of 16

Dr. Ashraf Suyyagh - All Rights Reserved
Experiment version 2.0

Original Experiment December 17th, 2020
Last Updated April 227, 2022

Revision History

Ver. 2.0

Split the optimization part from the old lab and made it into its own
experiment.

Split the error Analysis from the root finding experiment and merged with the
optimization experiment.

Removed the derivation of the Golden number.

Rewrote the entire sections of absolute and relative errors, added more
examples.

Clarified the stoppage criterion section and gave a more detailed example
Rewrote the Golden search algorithm section by clarifying the steps through a
step by step numerical example and added figures at each step

Page 16 of 16

University of Jordan
School of Engineering and Technology
Department of Computer Engineering

Practical Numerical Analysis (CPE313)
Experiment 8 - Numerical Methods for Finding Roots

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 8 - Numerical Methods for FiNdiNg ROOLS...........oocuiiiiiieee e 1
Numerical Methods for FINAING ROOLSuuiiiiiiiiiiiiiiiee e e e e e e e e e e e e nnneeeeeeeas 1
The Bracketing MethodS ... 2
Bracketing Method 1: Incremental SEarChuuuuiiiiiiiiii e 4
Bracketing Method 2: BiSECHIONcciiiiiiieieiee e s et te e e e e s e e e e e e e e e e e e e e s snnsaeneeeeeeeeennnnes 5

L@ 01T T/ =1 0 T £ 6
NeWLON-RaPNSON METNOUuuiiiiiiiiiiii s 7
MATLAB Built-in Functions for FINAING ROOTSuuiiiiiieee e e e e e e e e e nnneaneeeas 8
MATLAB Polynomials and the roots/poly COMMAaNdScoevviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 9

Numerical Methods for Finding Roots

We are all familiar with the quadratic formula f(x) = ax*> + bx + ¢ = 0 whose roots can be directly
computed using the equation:

_—b+ Vb’ —4ac

2a

X

Remember that the roots are the values of x that make f(x) evaluate to 0. But what if f(x) is not a
quadratic formula? How then can we find the roots of f(x)? Crude methods include plotting the
function and observing where the function intersects with the x-axis. For example, you can estimate
the roots of this polynomial equation of degree five f(x) = x’ — 5x*+ 5x> + 5x” — 6x — 1 by plotting
the function:

X -1:0.01:3.1;

y = Xx."5 -5*x.* + 5*x.”3 + 5*x.”2- 6*x - 1;
plot(x,y)

grid on

Page 1 of 10

[¥%)

'
(o8]
T

T4 05 0 05

And we can observe that this function has five roots.

Another method involves trial and error by guessing the value of x. Both techniques are obviously

inefficient and inadequate for the requirements of engineering and science practice. The former is
imprecise, while the latter is time-consuming. Numerical methods represent approximate alternatives

but employ systematic strategies to close in on the true root.

The Bracketing Methods

We have already seen in the previous experiment how we found the minimum value of a unimodal
function by "bracketing” it inside an interval with a lower and upper bound, and each iteration, we
modified this interval. In each interval, the interval (bracket) gets shorter and shorter towards the true

solution. We will do a similar thing to find roots.
Since we know that the root is the value that makes the function f(x) = 0, then we must find two
values such that one is positive; and one is negative. This way, we know that the function must cross
the x-axis in order to change sign, this crossing is a root since crossing the x-axis at a value x
means that y = f(x) = 0.

The problem we face is how to choose the two values that bracket the root. The figure to the left
represents the generic cases we might encounter. If we have two values of the same sign, this
means that we either have no roots in between (Left Figure (a)), or an even number of roots (Left
Figure -c)). If we have two numbers with opposite signs, this means they might bracket an odd

number of roots (Left Figure (b) and (d)).

There are exceptions to the generic rule which we present in the figure to the right. We can have a
bracket of two values of opposite signs that encompass an even number of roots if some of these
roots are tangential to the x-axis; that is, the root just touches the x-axis without crossing it (Right
Figure (a)). We can also have an even number of roots if the function is discontinuous (Right Figure

(b))

Page 2 of 10

fx)

Jix)t

Page 3 of 10

To find the roots, there are two steps:
¢ Find the intervals where the function changes sign because we know that inside this interval

we will have a root. To search for these intervals, we will use the Incremental Search

method.

¢ Find the approximate value of the root inside each interval that we obtained in the previous
step. For this step, we can use the Bisection method

Bracketing Method 1: Incremental Search
The incremental search works on real continuous functions and tries to find an interval where the

function changes signs. It provides us with the number of roots but not the exact value of the root. It

starts with dividing the function into » intervals of a certain width (spacing). If it finds that f(x;) and
f(x2) have opposite signs, then there must be a root in between. If the distance (spacing) between
the numbers is too small, the search can be very time consuming. On the other hand, if the distance
is too great, there is a possibility that closely spaced roots might be missed. The problem is

compounded by the possible existence of multiple roots.
Example: When plotting the function f(x) = sin(10x) + cos(x), we will observe it has nine roots in
the interval [3, 6]. Note that there are few roots that are too close to each other that you might

mistake them for one root; you need to zoom into the function to distinguish between them!

X = 3:0.01:6;
y = sin(10*x) + cos(3*x);
plot(x,y)
grid on
2 ; ; ; ; ;
A
15F f ~ 1
III | I.'ll I'-
1F |I |'III | ./‘-l"'. -
| II'I | I.'I I
05 | | | ',I | i1
|| I". J’) f
~ \/ ' |
0k f \ { \ | ~ | g
IIIII | II I.l" \ |
{ \ | | / |
05+ I|I 1 II | I.' II i
|I I.'- |'I i ||II |
1F .'II \ .-'II IIiI .'lI ll'. |II 1
| \J \ [
II n"ll \ |II
15+ / { i
/ W
2 i i i i
35 4 45 5 55 6

If we want to write a code that divides the function into 50 brackets and tries to count the number of

brackets that have roots in between, we can write:
Page 4 of 10

x = linspace(3,6,50);

y = sin(10*x) + cos(3*x);

numberBrackets = 0;

xb = [];

k = 1:1length(x)-1

sign(y(k)) ~= sign(y(k+1))
numberBrackets = numberBrackets + 1;
xb(numberBrackets,1) = x(k);
xb(numberBrackets,2) = x(k+1);

isempty(xb)
disp('no brackets found')

disp('number of brackets:')
disp(numberBrackets)
disp(xb)

number of brackets:
5
3.2449 3.3061
3.3061 3.3673
3.7347 3.7959
4.6531 4.7143
5.6327 5.6939

The code returned five brackets that changed sign, implying that we have five roots whereas we
know that the function has nine roots in the same interval. This error is due to the fact that we have
used too wide steps (small number of intervals). If we increase the number of intervals to 100 and
run the code again, we would get nine brackets implying nine roots which is the correct answer.

Bracketing Method 2: Bisection

The bisection method is used to find an approximation of a root within an interval. In each iteration,
the search interval is divided in half. If a function changes sign over an interval, the function value at
the midpoint is evaluated. The location of the root is then determined as lying within the subinterval
where the sign change occurs. The subinterval then becomes the interval for the next iteration. The
process is repeated until the root is known to the required precision.

Suppose we have the cubic function f(x) = x° + x — 3. If we plot this function over the interval [-1,
1.5], we will know that it has only one root.

X = -1:0.01:1.5;

y = Xx."3 + x - 3;
plot (x, y)

grid on

Page 5 of 10

-1 0.5 0 05 1 15

We will use the bisection method to approximate this root:

1.The first step is to find x; and x, such that f(x;) and f(x,;) have opposite signs. Say 0 and
1.5, for f(0)=-3 and f(1.5) = 1.875.

2.In the second step, we take the midway point between 0 and 1.5 as our first approximate
root, which is 0.75 and compute £(0.75) = —1.828125

3.Given that f(0.75) is negative, we know that our second approximation of the root is
between 0.75 and 1.5, so we take the midway point between them (= 1.125) as our second
root approximation. We compute f(1.125) = —0.451171875

4.Given that f(1.125) is negative, we know that our third approximation of the root is between
1.125 and 1.5, so we take the midway point between them (= 1.3125) as our third root
approximation. We compute f(1.3125) = 0.573486328125

5.Given that f(1.3125) is positive, we know that our fourth approximation of the root is
between 1.125 and 1.3125, so we take the midway point between them (= 1.21875) as our
fourth root approximation. We compute f(1.21875) = 0.029022216796875

So, when do we stop? Which value do we think is a good enough approximation of the root? Our
approximations were 0.75, 1.125, 1.3125 and 1.21875. We must compute ¢, between each two

successive approximations. This will yield 33.33%, 14.29%, 7.69%

As you can see, the error in approximating the root is decreasing, but it is still a large error. In this
case, you might need to choose a value for ¢, such that when the approximation error falls below it,

you will stop and consider the value you stopped at as a good enough approximation.

Open Methods

For well-posed problems, the bracketing methods always work but converge slowly (i.e., they
typically take more iterations to home in on the answer). In contrast, the open methods do not

Page 6 of 10

always work (i.e., they can diverge), but when they do they usually converge quicker. In this section
we present one of the most widely used open methods for finding roots.

Newton-Raphson Method

The Newton-Raphson method starts with an initial random guess x;. At the point f(x;), we draw a
tangent line that we extend until it intersects with the x-axis at a new point x;, ;. This new point is

regarded as a better approximation of the root. As we repeat this operation, the crossing of the
tangent lines gets closer and closer to the true root.

fix)

Slope = f(x;)

f) === ——

However, to convert this into a mathematical formula, we can use the concept of the derivative. We
know that the first derivative at x is going to be the slope of the tangent line, and we know that the

slope is computed as A y/Ax which in our case is:

J(xi)—=0

Xi — Xi+1

Jxi) =

when we arrange the terms, we get:

_f)

Xi

Xit1 = Xi which is called the Newton-Raphson formula.

Example: Suppose we want to find the root of f(x) =™ — x, the first step is to find the derivative
f'(x)=—e"—1, and start from a random initial guess, say x; = 0. We substitute the functions in
the Newton-Raphson formula:

—x;
_ e =X
Xi+1—-7Cf—T
—e '—1

We substitute x; = 0, which will give us x;,; = 0.5, then we substitute this value again to give us a
new x;,; = 0.566311003 and so on. We can then compute ¢, after each successive approximation

Page 7 of 10

and we can as well have a stoppage criterion ¢, of our choice. The following table shows the
successive approximations for this example. Notice how quickly we converged to the root and how

extremely small the approximation error is.

i X, le,l, %

0 0 100

1 0.500000000 11.8

z 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 <1078

To solve the above example in code, one can write:

y = @(x) exp(-1*x) - x;
yd = @(x) -1*exp(-1*x) - 1;
X = 0;
maxit = 50;
iter = 0;
es = 0.0005;
(1)
xold = x;
X =X - y(x)/yd(x);
iter = iter + 1;
X ~= 0
ea = abs((x - xold)/x) * 100;

ea <= es || iter >= maxit

root = X

root = 0.5671

MATLAB Built-in Functions for Finding Roots

MATLAB is a numerical tool whose built-in functions employ these techniques that you are learning
in this course. The fzero function is designed to find the real root of a single equation. A simple

representation of its syntax is

fzero(, x0)

where function is the name of the function being evaluated, and x; is the initial guess. The function

must be written as an anonymous function. Suppose we want to find the roots for f(x) = x> -9, we

Page 8 of 10

know that it has two roots —3 and 3, we can use the function fzero to find the closest root to our
initial guess:

fzero(@(x) x.”2 - 9, -2)

ans = -3

or

fzero(@(x) x.”2 - 9, 4)
ans = 3
Note that this function only returns one root at a time!

MATLAB Polynomials and the roots/poly Commands

A polynomial can mathematically be described as f,(x) = a,x" + ap_1 X" + ... + arx’ + a1x + ap
where n is the order of the polynomial, and the a’s are constant coefficients . For such cases, the
roots can be real and/or complex. In general, an nth order polynomial will have n roots.

Suppose we have the function fi(x)=x"—3x*+2x’— x>+ x+2, this polynomial can be
represented in MATLAB by having a vector of its ordered coefficients from highest order to lowest:

cl =1[1-32-11 2]

cl =
1 -3 2 -1 1 2

The function f3(x) = x* — 9 can be represented as:

€2 = [10 -9]

c2 =
1 0 -9

Notice that missing terms have a coefficient of 0, also do not forget the signs of the terms.

You can use this representation of MATLAB polynomials with the roots command to find the
polynomial roots; for example:

roots (cl)
ans =
2.0000 + 0.00001
1.6180 + 0.00001
0.0000 + 1.00001
0.0000 - 1.00001
-0.6180 + 0.00001

returns three real roots and two imaginary roots for f,(x), and the command:

Page 9 of 10

roots (c2)

ans =
3
-3

returns the two roots for the function f;(x).

The poly command is the inverse of the roots command; that is, it takes the roots and returns the
polynomial. For example:

poly([-3 3])

ans =

Experiment version 1.1

Original Experiment December 10th, 2020
Last Updated May 1@th, 2022

Dr. Ashraf Suyyagh - All Rights Reserved

Revision History

Ver. 1.1

Moved the Error Analysis to a previous experiment.

Clarified that there are two steps involved in finding the root.

Corrected the polynomial equation notation to be consistent with previous
experiments.

Page 10 of 10

University of Jordan
School of Engineering and Technology
Department of Computer Engineering
Practical Numerical Analysis (CPE313)
Experiment 9 - Differentiation and Integration

Material prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Experiment 9 - Differentiation and INtegrationuevvieeeiiiiiiiiiiie e e e e e e e e sneeaeeeeas 1
D (=] (T a1 F= LT o RO PP PR PPPPR 1
SIOPE OF @ TUNCLION L..uuuiiiiiiiiiiiiit s 1
THE DEIIVALIVE ..., 2
Backward and Centered Difference Approximation of the First Derivative...........cccccceeviiciviveneeeeennns 3
Higher Order Approximations of the First DErVAIVE..............uuvviiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeee e eeeeaeeeees 4
Derivative of an ENtire FUNCHIONoooiiiiiiiiiiiiicieeeeeeeeeeeeeeee ettt e e e e e e e eeeeeeeeeeeeeeeeeaeneeees 5
Derivatives of Unequally Spaced EMPIrical Data...........ccuuvviiieeeiiiiiiiiiieee e e e ssnneeeee e e e 5
Derivatives for Data WIth EITOISoiuiiiiiiiiiee et e e 5
MATLAB Functions for DIfferentialionoevviiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt e e e eeeeeeeeeeees 6
Tale=Te = iTo] I (@4 (o RsT=To I o] o1) SRRSO 7
The TrapeZOoidal RUIEccoi ittt e e e e e e e e e e e e e e st e e e e e e e e s snnseaneeeeeeeeannnnees 8
Simpson's § 1 =SSOSR 9
MATLAB Built-In INtegration FUNCHIONSoiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee ettt e e e ee e eaeeesseeeeeeeeeeees 10
Differentiation

Differentiation is one of the most important operations in Calculus. In this section, we will introduce
three variations of one numerical method that we use to compute the differential of a one-
dimensional function f(x) at a point x. These techniques are derived directly from the definition of
the differential. They are called the forward, backward, and central derivative methods. They are
considered less accurate than more elaborate techniques such as the Richardson technique or the
high accuracy differentiation formulas.

Slope of a function

The slope of a straight line (linear function) is calculated by using any two points on that line (x;,y;)
and (x,,y,), then calculating the y-difference between these two points over the distance between
these two points (x-difference):

Page 1 of 11

l

Y27V _ Ay S) = flxy) 1)

Slope = =
P Xy — Xy A Xy — Xy

=

But what if the function is not linear and we need to calculate the slope of the line tangent to a point
(x; f(x;)) on the line? We start by choosing any other random point (x,, f(x;)), then measure the
slope between these two points. Notice that x, is some distance Ax from x;; that is x; is x; + Ax.
Butif Ax is large, then we do not get an accurate result, because the resulting line is not the tangent
(see leftmost figure). If we choose another point closer to x;, that is Ax is small, then we get closer
to a line that is the tangent line (see middle and right most figures).

y y ¥y
flx; + Ax)
Ay
flx; + Ax)
} A}‘
flx) flx)
|
B x; + Ax x x; x;+ Ax x X; x
—_— —
Ax Ax
(a) (b) (©)

The Derivative

We know from calculus that the derivative of a function f(x) at a point x; is derived from the
definition of the slope. The derivative of f(x;) at point x; is defined as the slope of the tangent line
barely touching f(x;). As we have just seen, to theoretically compute the derivative of f(x) at x;,
we must have Ax to be as close as possible to zero but not be zero:

flx;+ Ax) — flx,)

i 2
::!i-r—r»lo Ax @

" :(_SX:
f'(x) 5

Numerically, however, it is hard, if not impossible, to have the limit of Ax approach zero, therefore,
we contend with the following approximation:

N g+ Ax) — flx)

fx) =~ A ®3)

To represent this equation with a true assignment operator, we must acknowledge the fact that there
is an error due to the step size Ax:

e @
X

The above definition is called the forward difference approximation of the first derivative. This is
because we are using a forward point (x; + Ax is to the right of x;) to compute the derivative. Let us
see how the forward difference approximation of the first derivative works through a numerical
example:

Page 2 of 11

Suppose we have the function f(x) =-0.1x>+0.35x+ 1, and that we want to compute the
derivative at x=1. We know from Calculus that f'(1) =0.15, but let us try to approximate it
numerically:

Let's start by having Ax = 0.5, then:

()= “-%g (D) — 0.1 and E(Ax)= 0.15- 0.1 = 0.05, therefore ¢, = 33.3%

If we keep choosing smaller Ax, say Ax = 0.1, then:

F) = ’“-%I (1) — 0.14 and E(Ax)= 0.15-0.14 = 0.01, therefore ¢, = 6.67%

and if we try another smaller step where Ax = 0.01, then:

()= ’“-03)0; (1) = 0.148999.. and E(Ax)= 0.15 - 0.148999... = 0.01, therefore ¢, = 0.667%

Notice that in the above example, we were able to compute €, because we know the true value of
the derivative mathematically.

In reality, we don't know the actual mathematical derivative, and in fact it is what we want the
computer to do; to find the derivative for us. In this case, we will do what we have already done
before, we will initially approximate the derivative using a large random Ax, and in each successive

iteration we make Ax smaller (i.e. divide it by 1.5, or 2, or 3, etc.). Then compute €, between each
two successive iterations, and if €, is less than €, we stop.

Backward and Centered Difference Approximation of the First Derivative

What if we choose a point to the left of x; instead of a one to the right of x;? We can redefine the
derivative approximation as:

fx) = flx;— Ax)
Ax

filx) = + E(Ax) ®)

This way, we apply the formula using x; and a previous value, for example:

£(1) = L) 60'1(0-9% =0.151 and E(Ax) = 0.151 - 0.15 = 0.01, therefore €, = 0.667%

Both the forward and backward difference approximation methods have a minor drawback; our
intention is to approximate the derivative at x;, but since we use a second point either to the left or to

the right of x;, then in our approximation of the derivative, it will be for a middle point between x; and

the second point, that is at a point x; + % and not the derivative at x;.

To have an approximation of the derivative exactly at x;, we use a third variation called the centered
difference approximation. This numerical method uses a value before x; and a value after x; such

Page 3 of 11

that x; is centered in between. So Ax must be the same in either direction. Therefore, we redefine
the derivative as:

[+ Ax) — f(x;— Ax)

e = 6
F 2Ax +E(Ax))
such that x, = i+ A% 42' (x; — Ax) o
For example:

()~ f‘“-(’5)0‘1f(0-95) —0.15, E(Ax) = 0.15-0.15 = 0.00, therefore ¢, = 0%

Notice that we used a larger step size Ax of 0.1 rather than 0.01, and we managed to get an
accurate result better than the forward or backward difference approximation with Ax = 0.01
because we are having the derivative centered at x; from the start.

fix) fix) fix)

! ppprodmaton

Higher Order Approximations of the First Derivative

The set of equations that approximate the first derivative that we have seen so far are actually based
on the Taylor series expansion of the derivative. In fact, they are based on only the first two terms,
and truncating the rest, so the error E(Ax)can also be thought of as a truncation error. If we include
more terms, then the error E(Ax) will become smaller and the results will be more accurate. The
equations that approximate the differential using more terms are called higher order approximations
of the first derivative. In this section, we will only list the three variants of the forward, backward and
centered approximations when use three terms of the Taylor series. You can look up the derivations
in any numerical methods or Calculus books but they are out of scope of this introductory course.
Notice that in what we already explained, we only used two points in our previous approximations.
Here, we are using three to four points in our equations:

The forward higher order approximation version:

_f(xiﬂ) + 4f(xi+]) -3f(x)

Xiy2 — X

f ”(-xi) = ®

Page 4 of 11

The backward higher order approximation version:

_3f0) =4 i) + £ i)

Xp— Xj-2

S (x) ©)

The centered higher order approximation version:

—f(xi0) +8F (i) = 8F (i) + fxi20)

10
12Ax (10)

filx) =

Derivative of an Entire Function

So we learnt how to approximate and find the derivative of function f(x) at a certain point x;. But,
what if we want to find the derivative of the function f(x) in general. In this case, we generate a
vector x, and we approximate the derivative at every point x. Simply put, we call our function in a
loop over each value x. Yet, it is imperative that the values in vector x must be evenly spaced in
order to have an accurate result.

Derivatives of Unequally Spaced Empirical Data

The assumption we have used thus far in finite difference approximations of the first derivative is that
the sample data points we measure, collect or generate in vector x are evenly spaced. This might
not hold true under empirical circumstances. Suppose you are reading values from a sensor, and
due to the jittering problem, the samples you get are not 100% sampled at exactly the same sample
rate and that some points are delayed or others are sampled early. Also, suppose that in some
experiments, you have missing data points. In these cases, you might not have the necessary data
points to approximate the differential. In these applications, we need to guess the missing data
through what we call interpolation before using it. We have already covered the interpolation in this
course.

Derivatives for Data with Errors

Not only do we have to contend with uneven data samples that we collect from our experiments,
sometimes the measurements we collect contain error. Suppose you are having a sensor that
measures the speed of a moving vehicle (e.g., car, train, airplane, etc.) and then you need to
differentiate the collected speeds to measure the vehicle acceleration, if the data has errors, these
will be amplified in the derivative. For example, in the figure below, if the collected measurements of
the car speeds indeed reflect the speed accurately, then the acceleration will be smooth. However, if
the sensor is not accurate enough, errors will be introduced in the measurement, and therefore, they
will be highly visible in the incorrect acceleration derivative. In such situations, we often need to
account for these errors by attempting to fit a smoother polynomial before calculating the
acceleration.

Page 5 of 11

(@) @ () @
i m
T t
i Fd
£ £
ﬁ_{\i E B I-:_!-\i s G
dt dt
1 1
(b) (d)

MATLAB Functions for Differentiation

MATLAB offers two built-in functions diff and gradient to determine the derivatives of data.
When we pass a one-dimensional vector of length n, the diff function returns a vector of length n -
1 containing the differences between adjacent elements. Practically, this function computes the
nominator of the fraction. The last step to do is to divide the values by the step size Ax. Kindly note
that with diff we can differentiate an entire function at all points of x.

Suppose we want to differentiate and plot the function f(x) = x* + 2x — 3 alongside its derivative
over the range [-2, 2].

y = @(x) x.”3 + 2.*x - 3; % Define the function as an anonymous function

x = [-2:0.01:2]; % Create evenly spaced x points with even spacing
delta_x = 0.01;

x = y(x); % calculate the function f(x)

dx = diff(fx);

dx = dx / 90.01;

plot (x, fx, x(1: length(x)-1), dx)
grid on

xlabel('x")

ylabel('f(x) and its derivative')
legend('f(x)"', 'dx/dy')

Page 6 of 11

or N]

f(x) and its derivative

10t /// 1

_,15 : i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

In comparison to the diff command, the gradient command uses central derivatives, thus giving
the derivative at the point itself. You must pass Ax to the function directly.

y = @(x) x.”3 + 2.*x - 3; % Define the function as an anonymous function

x = [-2:0.01:2]; % Create evenly spaced x points with even spacing
delta x = 0.01;

fx = y(x); % calculate the function f(x)

dx = gradient(fx, 0.01);

Integration (Closed Form)

The closed form integration is defined as the area under the curve f(x) from the points « to b as
the figure below illustrates. Numerical integration is sometimes referred to as quadrature. This is an
old name; most modern books use numerical definite integration. The most famous formulas for
numerical definite integration are Newton-Cotes formulas. We will explain two of the formulas in this
section: the Trapezoidal technique and one of Simpson's rules:

)

-

Page 7 of 11

The Trapezoidal Rule

The main idea of the trapezoidal rule is to divide the function into multiple trapezoids. Since we know
the equation that computes the area of a trapezoid, we can apply it, and sum all the areas of the
trapezoids.

The first step is to divide the distance between ¢ and 4 into evenly spaced multiple segments. In
this simple example, we divided the range into three segments between the four points a, m,n, and
b.The points a, f(a), m, and f(m) form a trapezoid. In general, remember that the function
linspace is useful in this case, or the colon notation (i.e. 2 : 0.1 : 8) in order to generate the points
x;. Once we get this vector of x-values, we need to substitute it in the given function f(x;).

fx)

f(b)

%

a m n b X

Then, we can compute the area of any trapezoid using the following equation:

flx) + flx)

7 (11)

area, = (x, — x;)

So initially, we compute the area of the first trapezoid in the first iteration, then the second trapezoid
in the second iteration, and so forth. The total summation approximates the area under the curve

flx).

Note that the more segments you have (smaller Ax), the better your approximation gets.

Page 8 of 11

Jx)

Xg X \ Xs X3 Xy Xs

p=a p=b-a x,=bh

Simpson's % Rule

We have noticed that the trapezoidal rule successively splits the area under the curve f(x) into
multiple trapezoids. Notice that the trapezoid between points xo and x; in the figure above severely
under approximates the actual area, while the trapezoid formed between x; and x, overly estimates
the area. This is because the trapezoid is formed using linear segments, whereas the functions are
not necessarily linear. One possible approach to mitigate this issue is to use smaller width
trapezoids (decrease Ax, increase their numbers). However, more trapezoids entail more
computations and time!

Simpson's % rule is based on the idea of instead of connecting the upper segments using a line, it

uses three points to draw a parabola shape instead. It assumes that parabolas better approximate
non-linear functions. It uses three values in every interval to find a parabola shape that connects
between them and therefore better approximate the original function f(x). Note in the figure below

how the new segments outlined by the red segment are now indeed a better approximation.

Page 9 of 11

flx)

7N\

Xo X1 X2 Xz Xg X5 Xg X7 Xg X9 X10

Now, the area for each segment can be computed as:

area, = %% (flxo) +4f(x) + flxy)) (12)

Now suppose we have five segments, it is clear that in each segment we need three points to
calculate the above equation. therefore, the number of x values we need to generate must be larger
than the number of segments. Examining the above equation, we can see that we need 2n +1 x—
points where n is the number of segments.

MATLAB Built-In Integration Functions

MATLAB has a built-in function that evaluates integrals for data based on the trapezoidal rule called
trapz, the values of x must be sorted in ascending order:

x=1[0.1.2.3.4.5.6 .7 .8];
y = 0.2+25*x-200*Xx."2+675*x."3-900*x . "4+400*Xx . 5;
trapz(x,y)

ans =
1.594800960000011

MATLAB uses more accurate numerical methods (we did not cover it in this course) to do the

integration using the integral command. For example, to integrate f(x) = ¢~ (In(x))2, one can
write:

Page 10 of 11

y = @(x) exp(-x.72).*log(x)."2;
g = integral(y,0,1)

q:
1.933057085069212

The function can also take co as a parameter:

g = integral(y,0,Inf)

q:
1.947522220295560

For multiple integrals, MATLAB offers the integral2, and integral3 commands (Check them - self
study)

Experiment version 1.1

Original Experiment December 17th, 2020
Last Updated May 17th, 2022

Dr. Ashraf Suyyagh - All Rights Reserved

Version History

- Removed the Optimization Section and made it into its own standalone
experiment

- Simplified the text language in many paragraphs.

- Fixed the mathematical notation to match the figures

- Removed the long formulae for the entire integration sum

Page 11 of 11

MATLAB Commands List

You are free to check the MATLAB documentation for any of them during the exam time. Use the
doc command followed by the command name

Chapter 5 \ Chapter 6 Chapter 7 Chapter 8/9
min poly fzero fminbnd
max polyval roots fminsearch
mean inv poly diff
median polyfit gradient
mode interpl trapz
std interp?2 integral
var interp3 Integral?
kurtosis interpn Integral3
skewness spline
prctile
igr
boxplot
movsum

hist/ histogram

bar

rand

randi

randn

rng ('shuffle')

rng (0)

randperm

cumsum

Equations and Formulae

E, = True Value — Approximation

.= True Value — A-\'ppru.\lm(mun % 100%
True Value

_ Present _Approximation — Pre vious Approximation «, 1009
Present Approximation

€

a

e, = (0.5 X 10:-")%

% —b + Vb* — dac

2a

Page 1 0of 3

S (x;)
/ L Xj)

Xig1 = X —

Newton-Raphson
formula

X1 = Xower T d

OX Ax—0 Ax

".‘ = "-H’J[P('f e ‘1
4= = D tigper ~ Hiwer) Golden Section
e =) Optimization
€0 = (2 = 3)| L |50 1007
".HI" |
| A Xecmm X)| ®
€, = (2 — p) | —2LEL_IT | ¢ 100%
"-npl
. va=¥1 Ay flx) = flx,)
Slope = —— Ay # Slope
Xp—x; Ax X=X
. Sy (x;+ Ax) = f(x;) o
fx)= Q-‘-= lim J % I Derivative

/.'[o)y _f‘v.\'“_]) — f(\,’

Forward difference order
approximation

Backward difference order
approximation

fxiey) = flx;_y)
2Ax

f'l‘_r'.)=

Centred difference order
approximation

=f(Xip2) + 41 (xi4y) = 31 (x;)

Xig2 — X

flx) =

Forward difference higher
order approximation

flx) =

3,“,) - 4.’""[—-') + _f(.\"'_:,
X;

i~ Xi-2

Backward difference
higher order
approximation

filx) =

.f(\"'+11 + 8.,.\'_l"~+|) — 8].{.\',‘_1) + _fi:‘\',-_:l

12Ax

Centred difference higher
order approximation

flx) + flx;)
2

area, = (x, — x;)

The Trapezoidal Rule
Segment Area

Simpson's 1/3 Rule
Segment Area

Page 2 of 3

Regression - Equations and Formulae

y=apx+aq

ady =

> y; > x;
et J & b L3 oy =3
- a =y—aX

n

ay =

n S XY — S X S: Vi

n X = (S)

e=y—a\x—aq

. n " n "
S, = 2i=1 € = 2_i=) Vi — ayX; — @)
Sl = ._::’=I i — :"):
) . Coefficient of
re= S =5, Determination
S, — Method 1
nY (xy) =Sy Coefflc_lent_ of
r= Determination
Vv n S \: — S X)) \Vn S \,- — | S ;)2 — Method 2

Page 3 of 3

The University of Jordan
School of Engineering
Department of Computer Engineering
Practical Numerical Analysis (CPE313)
Additional Exercises 1 - MATLAB Fundamentals |

Exercises prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Exercise 1 - Equivalent MATLAB Expressions (10 Marks + 14 Marks)........ccccceveveveneecieneseeseseeeeseeeene,
Exercise 2 - Infinite Square Roots Problem (6 Marks)ccueoveieiririnineneeeeeseseseseeeeeeeeene
Exercise 3 - Approximations Of Pi (9 MarkS)........cceevererieriiiieieireresesterteee e
Exercise 4 — MATLAB Display FOrmats (1.5 Marks)........cccouerueiririrenenisenieieieeeesesesiesee e
Exercise 6 — Finding MATLAB funCtions (1 Mark).........cccvevuiiieieieieececeeeeie et

Exercise 1 - Equivalent MATLAB Expressions (10 Marks + 14 Marks)

Part 1 - For the given mathematical expressions, write down the equivalent MATLAB expression and the result.

Expression

MATLAB Result

e~25 4 3.47In(112)e %"

MATLAB Expression:

sin™" (cos*(37°) + 5in(25°)) Write final answer in degrees

MATLAB Expression:

1 1
dtan ' [=) —tan ' [—
5 239

MATLAB Expression:

i

Show if the left-hand side of Euler’s Identity” equals the right-hand side: €™ +1 =10

Ver. 1.1

Page 1 of 6

MATLAB Expression:

l0g4(8)logy(282)
log(70)In(18)

MATLAB Expression:

"Euler identity is one of the most beautiful mathematical equations. It has the number 1, the basis of all numbers; the 0, the concept of nothingness; = the

number that defines circles; e the number that defines exponential growth and decline; and finally, i, the imaginary square root.

Part 2 - Suppose that u =5, v =-4, and w = 7.25. Use MATLAB to evaluate the following expressions.

Expression

MATLAB Expression

Answer

(571_\/5 . U—Z)ln(wQ)

(8logiy(u'/™"))

14
J(uo— i —
(uv ud® + 6>

The first symbol means angle

N

Ver. 1.1

Page 2 of 6

Vuv |u + wil

logio(v) — sin?(u?)

65uv2w
elov?
1000 1000
v | e

Page 3 of 6
Ver. 1.1

Exercise 2 - Infinite Square Roots Problem (6 Marks)

Suppose we have the following infinite square roots equation:

\/x+\/x+\/x+m—4

Let us solve for x by hand.

Step 1: Take the square (x?) for each side, so we get:

x+\/x+\/x+\/x+\/x+---16

Step 2: The new equation has the very same infinite square root term which we know that it equals 4, so:
r+4=16
Step 3: Solve for x, thus x = 12.

Now use MATLAB to check the answer. Given that this is an infinite square roots problem, you must use a limited
number of square roots as illustrated in the table, but by doing so, the result will be close to 4 but not 4. Use MATLAB to
fill the table.

How many square roots must we use such that the difference between the approximate result and the actual value is
less than 0.5%? Hint: The error percentage equation is given by:

Approximate Result — Result "

100
Result

Approximate

Approximation Result

Difference Error Percentage (%)

Page 4 of 6
Ver. 1.1

Exercise 3 - Approximations of Pi (9 Marks)

Pi is one of the few numbers that has fascinated humans for thousands of years. Numerous mathematicians have come
up with approximations for .

1. Use MATLAB to find out the result of some of these approximations listed in the following table.
2. Calculate the percentage error between these approximations and the actual value of using the percentage error
difference equation:

Approximation —

™

x 100

3. The 34 and 4t approximations are accurate to the 30t and 18t decimal digits, respectively. That is, they are still not
exact values of Pi. Why is your percentage error difference different than expected?

Hint: Change the output format to see more significant digits.

Ver. 1.1

No Approximation Formula Approximation Result Percentage Error Difference
: PP (1 Mark Each) (0.5 Marks Each)
1 3+ s + 29 + s
60 602 603
9 9
2 e e
5 *)
3 In(640320° + 744)
V163
. 80v/15(5* + 53v/89)2
3308(5* + 53+/89) — 3v/89
5 19</ 10100
11222.11122
5 63 17+ 15v/5
25 T+15V5
Page 5 of 6

Exercise 4 - MATLAB Display Formats (1.5 Marks)

Suppose that x = 10 and y = 75.75. Show the result of performing the operations when MATLAB display format is set to

the options given in the table.
gx—O.Q

y—y?

Format

Answer

long

short e

long e

bank

rat

+

Exercise 6 — Finding MATLAB functions (1 Mark)

Use MATLAB function look up capability to find the functions which do the following:

Functionality

Function

Find the wavelet Fourier transform

Decode JSON-formatted text

Ver. 1.1

Page 6 of 6

Table of Contents

Exercise 1 — Basic Vector Operations (11 Marks)

Exercise 2 — Basic Matrix Operations (19 Marks)

The University of Jordan

School of Engineering

Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Exercise 3 — Fun with Numbers | (7 Marks)

Exercise 4 — Fun with Numbers Il (4 Marks)

Exercise 5 — Multidimensional Matrices (4 Marks)

Additional Exercises 2 - MATLAB Fundamentals Il

Exercises prepared by Dr. Ashraf E. Suyyagh

Before starting to solve this lab sheet, please load these matrices into MATLAB by clicking on the provided
labsheet_02.mat file or by inputting them manually (to practice). If you change these variables by accident,
simply load the file again to restore the original values.

vp=1[8 9 —6 0

Ver. 1.0

U3

U6

o oW
e

U8

V10 =

[12

95
—-53
—11

[12

14

-7

1
12
78
79
12

—19
33
41

—12

32
44
48
89

13

—23
—32
91

vp=[7 4 =3 =2

vy =

—19

3

—97]

~13

U5 = | o7
49

39 19 29]

15 2 52

10 4 16

741

=15 3 1
12 23
4 —12
7 54
16 7
18 -7
~18 9 |

Page 1 0of 5

Exercise 1 — Basic Vector Operations (11 Marks)

Use MATLAB commands to find the output of the following operations. Provide a numeric answer, unless we ask for the
command instead.

Operation Answer
1 | Multiply v3 by v4 and then the result divide by v5 (elementwise) Numeric Answer
2 | What is the MATLAB expression (command) to append all vectors v1 through v5 vertically Command
, N Numeric Answer
3 | Multiply vectors v1 by v5 (normal array multiplication)
4 | Multiply vectors v4 by v2 (normal array multiplication) Numeric Answer
Append v1 and v2 together, save them in x. Then append v3 and v4 together, save them Command
5|iny. :
(Numeric Answer

How many elements are there in the vector y * x?

for no of elements)

Ver. 1.0

6 By only using the colon operator, create a vector z that has the values from 1000 to -1000 Command
with a spacing of 5
Using MATLAB commands only, create a vector with 150 elements between 25 and 6257 CO”.’””a”d

7 , . Numeric Answer
What is the spacing between elements? f :

or spacing

8 Create a logarithmically spaced vector between 1,000,000,000 and 10 such that the Command
elements of this vector are multiples of 10 in descending order

9 Write the command that repeats each element in v3, 9 times and shows the result as a Command
row vector (horizontally)

10 | Write the command that converts v5 to a 2x2 array Command

11 | Write the command that shifts v2 twice to the left Command

Page 2 of 5

Exercise 2 — Basic Matrix Operations (19 Marks)
Use MATLAB commands to find the output of the following operations. Provide a numeric answer, unless we ask for the
command instead.

Operation Answer
Multiply (element wise) the natural logarithm of the absolute values of v6 by
1 | the log10 of the square of each element in v7? Numeric Answer
What is v8*v9 — v6 + transposed v7?
2 Numeric Answer
What is the command to multiply the LEFT diagonal of v6 by the LEFT
3 | diagonal of v7?
What is the command to retrieve all the negative elements in v10?
4
What is the command to retrieve the indices of all occurrences of -12 in v10?
5
Write the command(s) that count all numbers between 70 and 100 in v10?
6
Write the command to sort the rows of v10 in descending order and save them
7 | into a new matrix?
Write the command(s) to extract the RIGHT diagonal of v10?
8
Write the command to change all negative numbers in v6 to 0
9
Write the command to concatenate v6 and v7 vertically, then change the
10 | shape of the resulting matrix to be 2x9
1 Write the command to extract the middle row in v6?
12 Write the command to extract the middle column in v7?
Write the command(s) to sum all the elements in v10
13
. 44 -23 -19 .
14 Write the command(s) to replace the elements 48 —32 —12 in v10 by
v9
Write the command(s) that multiples all elements in a magic cube of size 3
15
Write the command(s) that show how a magic cube of size 4 actually has all
16 | its columns and rows sum to the same number
17 | Write the command that rotates v8 by 180
18 | Write the command that flips v8 vertically
19 | Write the command that creates and initializes an 8x8 matrix to zero?

Ver. 1.0

Page 3 of 5

Exercise 3 - Fun with Numbers | (7 Marks)

Starting with only the command ones(2), write the sequence of commands to create the following
matrix:

=R e OO OO0 OO o O
L~ S en B as B an B an Bl an Bl en B e Bl @)
L N ==l en R en R e B av Bl el e R an)
= R R O OO0 OO O o o
O O OO NMNDNDNDNOOOoOOo
O OO NN NDND OO OO
SO OO NN NDND OO OO
O O OO NMNDNDNDNO O OO
SO DD DO DD DD OO =
SO OO oo oo H
OO OO OO OO KK
OO OO OO OO

Exercise 4 - Fun with Numbers Il (4 Marks)

Starting with only the command eye(4), write the sequence of commands to create the following
matrix:

0 0 01 1 0 0 0]
00100100
01 00O0O0T120
1 00000O0O01
1 00 00O0O01
01 00O0O0T10
00100100

0001 1 0 0 0

Page 4 of 5
Ver. 1.0

Exercise 5 — Multidimensional Matrices (4 Marks)

Inside the file labsheet_02.mat, the variable v11 has a 3D array of 3 slices, and each slice is 4x4.

Operation

Answer

1 | Extract the elements in the third slice of v11

2 | Extract the first column in the first slice of v11

3 | Using linear indexing, retrieve the last element in v11

4 | How many zero-valued elements are there in v11?

Ver. 1.0

Page 50of 5

The University of Jordan
School of Engineering

Department of Computer Engineering

Practical Numerical Analysis (CPE313)
Additional Exercises 3 — Scripts, Functions and Control Flow

Exercises prepared by Dr. Ashraf E. Suyyagh

Table of Contents

EXErciSe 1 — MATLAB FUNCHONScuveiieeieitie ettt ettt ettt s e e eat s st e e bt e e st e s e beeesabessabesesabeesbesssntessbesesnreesns 1
Exercise 2 — Spring is Here: LOVE @nd FIOWETScc.eiuiriiieieieieeeeert ettt st 2
EXEICISE 3 = GROMEINC SEIIESeeeeeeeeeeeeeeeee et e et e e e ettt e e eeeea s s eeteeeeseaaaseaeeeeesssaaasseaeeeeesssasasnsesereeesssasanseeeeeeeees 2

Exercise 1 - MATLAB Functions

You are required to write a MATLAB primary function that accepts as an input two variables. The function arguments
are:

e myVec: a4-element positive numeric and integer vector whose values are larger than 10
e myArray. a numeric array with exactly 4 columns, should only contain real integer numbers

You must use function argument validation to check if myVec and myArray satisfy the requirements.

If all requirements are met, then the function asks the user for a third variable myTask to input using the command
window. The variable myTask will have string values only.

e If myTask has the value “1°, the code will multiply myVec by myArray rows on an element-by-element basis.

e If myTask has the value 2’, the code will count how many instances each element in myVec appears in myArr

e If myTask has the value ‘3, the code will perform array multiplication between myVec and myArr. You might
need to transpose myVec in some cases to make sure the multiplication is legal.

Each one of the above three tasks must be implemented as a subfunction that your primary function calls.

Finally, the primary function must return the result to the user in the variable result and display to the user the message:
“This function has been called x times”. It is your responsibility to keep track of x.

Page 1 0of 2

Exercise 2 — Spring is Here: Love and Flowers

Write a MATLAB script which asks the user to input either one of these two values: ‘1 or ‘2.
1. If the user inputs ‘1, you must plot the following equation on the x-y coordinate system:

n(t
x=1x sin(0.872ﬂﬂ()

)
)

sin(t)
t

y = — |t| x cos(m

where t has at least 350 values between —mr and
2. Ifthe user inputs ‘2, then the program must plot the following polar equation:
r = 3 4 8cos(86)
and 6 has 1000 values between 0 and 10.

Hint: Use plot(x, y) to plot on the Cartesian coordinate system, and polarplot(theta, r) to plot on the polar
coordinate system.

Exercise 3 - Geometric Series

A geometric series is defined as the sequence 1, x, x2, x3 ... x™ ,in which the powers of x range from 0 to .
If |x| < 1, then the series will converge to fx Otherwise, the series will diverge towards

a) Forx = 0.329, compute the value the series will converge to.

b) Define an anonymous function that implements the above geometric sequence.
Hint: The function will have two arguments, x and n, where n is a vector of the powers used.

c) Generate and sum the values for the first 5 elements of the geometric series by calling the anonymous function
for x = 0.329. Repeat for the first 50 elements, then 100 elements.

Page 2 of 2

The University of Jordan
School of Engineering

Department of Computer Engineering

Practical Numerical Analysis (CPE313)
Exercises Set 4 — MATLAB Plots

Exercises prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Exercise 1 — Computer Performance PrOfiliNgoccueiiiieciieceeseeee sttt ettt et st be et e b naennas 1
EXEICISE 2 — BASIC 3D PlOLS ...cuvieiieiiicie ettt ettt et ettt e st e et e et e et e e be e beesbaeeaaeeabeeaba e beestaesabesabeeabeeabe e beebaeseenanan 3

Exercise 1 - Computer Performance Profiling

The file ‘profiling.mat’ consists of an array of eight columns. Eight column is a performance log for a computer system
component recorded over the period of 200 seconds at a rate of 1 second (200 samples). The file contains data for
these system components in order:

Core0, Core1, Core2, Core3, Memory, HDDO, HDD1, SSD

You are required to write a MATLAB script that loads the file ‘profiling.mat’ and visualizes its data in one figure
EXACTLY as shown in Figure 1. The specifications to recreate the Figure are as follows:

AN

o

10.
1.

Use tiled formatting with compact spacing in between tiles.

The figure size must be 1024 x 768 pixels and starts 100 pixels from the left bottom corner of the screen.

The main figure and subfigures titles are bold, and in fixed width font.

All figure titles must appear exactly as shown.

The main figure title size is 18, the subfigures title size is 14, the x-axis labels are size 12, and y-axis labels are
size 10.

The grid must be visible for all graphs.

The x-axis range must show the whole range from 0 to 200, and the y-axis must have the complete range from
0 to 100. The 0’s must appear on the graph.

For the memory plot, you must also compute the average memory utilization and plot it in dashed line format.
For the disk access plot, you must show a legend for the three disks and let MATLAB choose the default
coloring for the three plots.

You must save the figure as a ‘.bmp image at the end.

The y-axis label color is (#0072bd), the x-axis label color is (#a2124f), the titles color is (#7E2F8E), and the
average memory plot color is (#77ac30)

Page 10of 3

Percentage (%) Percentage (%) Percentage (%)

Percentage (%)

-
(=)
o

o
o

o

100

100

50

100

50

Core0 Utilisation

100 150
Time (seconds)

50

[=}

200

Corel Utilisation

0 50

100
Time (seconds)

150 200

Core2 Utilisation

0 50 100 150
Time (seconds)

200

Core3 Utilisation

T s

0 50 100 150 200
Time (seconds)

Percentage (%)

Percentage (%)

100

Memory Utilisation

90 -

30

100

50 100

Time (seconds)

150 200

Disk Access

80

70 -

60 -

50

IS
c

20 1

i

Iy

HDDO
HDD1
SSD

|h i kAN ﬁ\
| “VM[M ‘quww Nﬁw\ ¢“MAM

Mf HM

|l

50 100
(seconds)

150 200

Time

Page 2 of 3

Exercise 2 - Basic 3D Plots

You are required to write a MATLAB script that visualizes its data in one figure EXACTLY as shown below.

ok owh =~

Use tiled formatting with normal spacing in between tiles.

The underlying function is: f (x,y) = sin (x)cos (¥).

You need to plot the figure extending from the range 0 to 10, each axis must have 100 points.
The figure size must be 1200 x 800 pixels

Create a subtitle for each plot
Save the plot as a pdf image

Mesh Plot

Surface Plot

Contour Plot

©

Waterfall Plot

Page 3 of 3

The University of Jordan
School of Engineering

Department of Computer Engineering

Practical Numerical Analysis (CPE313)

Exercise Set 5 — Statistics and Probability

Exercises prepared by Dr. Ashraf E. Suyyagh

Table of Contents

Exercise 1 — Task EXECULION TIME ANGIYSISccviiuieierieieeitese et ettt ettt e st e e e e be s e eaeste e b e stesreensesreensentesssensesseensenes 1

Exercise 1 - Task Execution Time Analysis

In computer systems in general, and especially in real-time, control, and embedded systems, we take care of measuring
the execution time of system tasks and understanding their behavior. For example, we do not want the execution time of
a system task to exceed its deadline, so we need to improve and shorten its time, if possible. On one system, the same
task can have different execution times. There are many reasons for this; if its data is already allocated in the cache, it
will execute faster, if not, it will be slower trying to fetch the data from the main memory into the cache memory. Yet, the
most important reason is that tasks have loops and if-statements; depending on the input variables, some loops will
execute longer or shorter, and some if-statements will execute the if-part, others the else-part. Therefore, we can expect
varying execution paths and therefore execution times for each task.

Measuring the execution time and other metrics is called task profiling, and the output logs are called traces. The file
‘taskTraces.mat’ consists of an array of three columns. Each column contains the times (in ms) it took to execute tasks
T, , Ty, and 75 100,000 times. Load the file ‘taskTraces.mat’into MATLAB and answer the following questions:

Answer

|
N o | n | o

What is the minimum and maximum execution times for ’—‘
minimum \

?
each task? | maximum |
.
skewness |

a) What is the skewness of the execution time
distribution of each task? !‘

No. Question

T ¥ T3

Description (a, b, ¢)

b) Which task execution times distribution is normally T1
distributed?

c) What about the other tasks? Are they lightly,
moderately, or heavily skewed? T,

d) Where do you expect the majority of the execution
times to reside; at the left, center, or right of the
distribution graph?

Page 1of4

] Command | Result
Which command would you use to find the central T,
tendency of each execution time distribution? Ty
T3

a) Which of the three distributions do you think you can
compute the standard deviation and variance for and
have valuable information?

b) What is the result of the standard deviation or
variance for this/these distribution?

Classify the three execution times distributions into 151
mesokurtic, leptokurtic, platykurtic. T2
T3

] Type

Based on the excess kurtosis value, which one of these
three distributions have task execution times that are
more extreme and away from the other time samples?

IQR
Compute the three quartile points and the interquartile r!‘ % % <
range for each of these three task execution time 1
distributions? T2
T3

Draw the boxplots for each of the execution times Plot 1
distributions on individual plots and copy/paste them in
their specified location to the right.
Briefly explain what you understand from each plot
regarding the execution times themselves.

Explanation:

Plot 2

Page 2 of 4

Explanation:
Plot 3
Explanation:
Draw a proper histogram for each of the three task Plot 1
distributions.
The bin width for 7; must be 10 ms, for T, must be 5 ms,
and for z4itis 1 ms.
Copy/paste your graphs in the designated space to the
right
Plot 2

Page 3 of 4

Plot 3

10

What is the probability that the execution time for task 7,
is less than or equal 500 ms?

What is the probability that the execution time for task 73
is more than 8.5 ms?

Page 4 of 4

	Experiment 1 - MATLAB Fundamentals I
	What is MATLAB?
	MATLAB Environment
	MATLAB as a Numerical Calculator
	Order of Precedence of Arithmetic Operations
	MATLAB Variables and the Assignment Operator
	Special Variables and Constants

	Working with Complex Numbers
	Complex Number Functions

	MATLAB Built-in Mathematical Functions
	Numeric Display Formats
	Discrete Mathematics in MATLAB
	Sets in MATLAB
	Discrete Mathematics

	Performance Timing in MATLAB
	Number Rounding and Rational Fraction Approximation
	Commands for Managing the Work Session
	MATLAB Help and Documentation
	Experiment 2 - MATLAB Fundamentals II
	Scalars, Vectors, and Matrices
	Vectors
	Creating Vectors
	Appending Vectors
	Useful techniques for creating large vectors

	Matrices
	Vector and Matrix Indexing and Addressing
	Special MATLAB Vectors and Matrices
	Matrix Manipulation
	Sorting Vectors and Matrices
	Vector and Matrix Mathematical Operations
	Vector and Matrix Logical Operations
	Multidimensional Matrices

	Data Import and Pre-processing
	Loading and Storing MATLAB Variables
	Using the Interactive Import Tool
	Importing Spreadsheets using the GUI tool
	Importing Text Files using the GUI Tool

	Experiment 3 - Scripts, Functions, and Control Flow Operations
	Scripts
	Script Creation and Access
	Writing Scripts

	Functions and Subfunctions
	Defining MATLAB Functions
	Creating MATLAB Functions
	Creating MATLAB Subfunctions
	Global Variables
	Persistent Variables
	Function Arguments Validation
	Function Handles and Anonymous Functions

	Control Flow
	Conditionals
	Switch Statement
	Loops
	Loop Vectorization

	Experiment 4 - MATLAB Plots
	Introduction
	Simple Vector Plots on the Cartesian Axes
	Plotting a Matrix against a Vector using different Plot Commands
	Plotting a Matrix against another Matrix
	Plotting Different Data Against a Common Axis
	Tricky Function Plots

	Figure Annotation and Options
	Tiled Plots
	Plot Customization
	Comet Plot Animation
	3D Plots
	Storing MATLAB Figures
	Summary for Creating Professional Plots
	Experiment 5 - Statistics and Probability
	Basic Statistical and Probabilistic Analysis
	Skewed Distributions and the Mean and Median
	The Standard Deviation and Variance
	Analysing Skewed Data
	Understanding and Plotting Boxplots
	The Moving Average

	Drawing Histograms
	Random Number Generation (RNG)
	Uniformly Distributed Numbers
	Uniformly Distributed Pseudorandom Integers
	Normally (Gaussian) Distributed Random Numbers
	Random Permutations of Integers

	Probability
	Probability Density Functions (PDF)
	Cumulative Density Functions

	Experiment 6 - Solving Linear Equations, Basics of Linear Regression and Curve Fitting, and Interpolation
	Solving Linear Equations in Matrix Form
	Representing Linear Equations in MATLAB
	System of Linear Equations

	Linear Regression
	Least-Squares Fit of a Straight Line
	Quantifying the Goodness of Fit
	MATLAB Built-in Functions for Regression

	Curve Fitting
	Interpolation
	Experiment 7 - Error Analysis and Optimisation
	Error Analysis
	Difference between Accuracy and Precision
	Roundoff Errors
	Absolute Errors
	Relative Errors and the Stopping Criterion
	Example: Maclaurin series expansion of e^x and Relative Errors

	Introduction - What is Optimization?
	Single Variable Optimization
	Multi-variable Optimization
	The Golden Number
	Overview of the Golden-Section Numerical Search (A Bracketing Method)
	Details of the Golden-Section Search Method through an Example

	What about the maximum points?

	MATLAB Optimization Built-In Functions
	Experiment 8 - Numerical Methods for Finding Roots
	Numerical Methods for Finding Roots
	The Bracketing Methods
	Bracketing Method 1: Incremental Search
	Bracketing Method 2: Bisection

	Open Methods
	Newton-Raphson Method

	MATLAB Built-in Functions for Finding Roots
	MATLAB Polynomials and the roots/poly Commands

	Experiment 9 - Differentiation and Integration
	Differentiation
	Slope of a function
	The Derivative
	Backward and Centered Difference Approximation of the First Derivative
	Higher Order Approximations of the First Derivative
	Derivative of an Entire Function
	Derivatives of Unequally Spaced Empirical Data
	Derivatives for Data with Errors
	MATLAB Functions for Differentiation

	Integration (Closed Form)
	The Trapezoidal Rule
	Simpson's Rule
	MATLAB Built-In Integration Functions

	Exercise 1 - Equivalent MATLAB Expressions (10 Marks + 14 Marks)
	Exercise 2 - Infinite Square Roots Problem (6 Marks)
	Exercise 3 - Approximations of Pi (9 Marks)
	Exercise 4 – MATLAB Display Formats (1.5 Marks)
	Exercise 6 – Finding MATLAB functions (1 Mark)

