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What is MATLAB? 

MathWorks has developed and maintained MATLAB since the 1970s. MATLAB is a programming 

language and software environment that manages data interactively.  

MATLAB is historically oriented towards: 

• Matrix operations and linear algebra. 

• Numerical analysis. 

• Fast and easy data plotting 

• Interface with other programming languages 

• Symbolic processing (e.g. differentiation and integration with symbols as you would solve 

problems in Calculus). 
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MATLAB has a wide array of toolboxes for image processing, signal processing, statistics, machine 

learning, control and automotive systems among dozen others (may require additional paid licenses, 

so we might not have all of them in the lab). 

MATLAB provides through an additional integrated product called Simulink graphical model-based 

design and simulation for numerous engineering, scientific, and economic systems (may require 

additional paid licenses, so we might not have all of them in the lab). 

C++ and Java are compiled languages where all the code is first compiled, then an executable is 

generated and run afterwards.  In contrast, MATLAB is an interpreted language. There is no code 

compilation. MATLAB executes commands in order during run-time. That is; it understands 

(interprets) the commands one-by-one as they appear in the code/script. 

MATLAB Environment 

The main screen of MATLAB has five main windows: 

 

1. The Ribbon tab where you have access to the IDE operations: opening new or existing files, 

save files, import data from files (e.g. Excel or CSV), set working path, run your code, and 

access MATLAB plots and numerous toolboxes. 

2. Current working directory where you save all your MATLAB scripts, functions, plots ... etc. 

MATLAB commands expect to work with files in the current working directory (More on this 

later). You will learn how to setup the working path later.  

3. Command Line where you write and execute your MATLAB commands. You will see the 

output of your commands in the same window. 

4. Workspace where you all your session variables are saved and accessed.  

5. Help and Documentation where you can search for any topic or command. 
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MATLAB as a Numerical Calculator 

You can use MATLAB to quickly find the output of many mathematical operations. For example, try 

to copy/paste these codes one by one in the command window, then press Enter to see the output 

after each one.  

10 + 10 

ans = 20 

65 - 35 

ans = 30 

85 * 5 

ans = 425 

2 ^ 10 

ans = 1024 

8 / 4 

ans = 2 

8 \ 4 

ans = 0.5000 

Note that in the last operation, we used the backslash instead of the division operator. The 

backslash acts as a division operator but in the reverse order. So, 8 \ 4 is equivalent to 4 / 8 = 0.5. 

This is called backward division while the normal division case is called forward division. 

Notice that after each operation that you execute, your answer is stored in a special variable called 

ans (that is short for answer). There is only one ans variable that is constantly changing as it always 

stores the result of the most recent operation. Each subsequent operation essentially overrides the 

previous answer with its own result and stores it in ans. You can see the ans variable to your right in 

the Workspace window. The workspace window displays all variables used in your session. Later 

on, when you work with large data (e.g. arrays), you can double-click on the variable and see its 

content in an Excel-like sheet.  

MATLAB saves all your previous keystrokes. While in the command window, press the Up-Arrow on 

your keyboard. You will see all your previous commands. You can also access all previous 

commands by typing commandhistory. From there, you can select any command or group of 

commands by pressing (SHIFT + LEFT Mouse button) on each of them.  You can revaluate these 

commands by (Right-Click on your selection --> Evaluate Selection). You can edit the 

commands too by using Backspace and Delete keys and Left and Right arrow keys.  
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Order of Precedence of Arithmetic Operations 

One easy way to remember the rules of precedence of arithmetic operations is by remembering the 

word: PEMDAS. Each letter stands for the first letter of the operations in their order of precedence.  

1. Parenthesis 

2. Exponentiation 

3. Multiplication and Division 

4. Addition and Subtraction 

When the precedence level is equal, evaluation is performed from LEFT to RIGHT. 

Calculate the output of these examples by hand. Compare your answer by executing these 

examples in the command window. Copy/paste these expressions one by one in the command 

window, then press Enter to see the output after each one. 

8 + 3 * 5 

ans = 23 

8 + (3 * 5) 

ans = 23 

(8 + 3) * 5 

ans = 55 

4 ^ 2 - 12 - 8 / 2 * 2 

ans = -4 

4 ^ 2 - 12 - 8 / (2 * 2) 

ans = 2 

4 ^ 2 - 12 - 8 \ (2 * 2) 

ans = 3.5000 

3 * 4 ^ 2 + 5 

ans = 53 

(3 * 4) ^ 2 + 5 

ans = 149 

27 ^ ( 1 /3 ) + 32 ^ (0.2) 

ans = 5 
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27 ^ ( 1 /3 ) + 32 ^ 0.2 

ans = 5 

27 ^1 / 3 + 32 ^ 0.2 

ans = 11 

MATLAB Variables and the Assignment Operator 

Unlike other programming languages like C++ or Java, you DON'T need to declare a MATLAB 

variable and define a type prior to its use. You can directly assign values to variables in MATLAB.  

By default, and unless otherwise defined, ALL numeric values are treated as double-precision 

floating-point values in MATLAB.  

Variables can directly store text, tables, structures, vectors and arrays (matrices) among other data 

types (more on this later). 

As explained before, if no variable is used to assign the result to it, the default variable where the 

answer is stored is ans. 

To define a new variable, simply write the variable name followed by the assignment operator (=) 

and the value to be stored in the variable.  ONLY ONE variable can be written to the left hand side of 

the assignment operator. Expressions such as  are NOT ALLOWED. 

Copy/paste these examples one by one in the command window, then press Enter to see the 

output after each one. 

a = 25 

a = 25 

b = a + 25 

b = 50 

5 * 20 

ans = 100 

c = ans * 10 

c = 1000 

d = 8 

d = 8 

d = 'numerical' 

d = 'numerical' 
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Notice that we did not define any datatypes for our variables in the above examples (There is no 

int, or float, or double, or string). 

Note that the output of 5 * 20 is implicitly stored in the ans variable (since the output was not 

assigned (stored) into any other variable). Also note that we can use the ans variable in further 

computations (c = ans * 10) even though it is not a recommended practice because ans always 

changes value. 

Interestingly, in the above example, the variable d initially holds the numerical value . Then, we 

override it to store the string 'numerical'. This is permissible since in MATLAB, if the variable already 

exists, MATLAB changes its contents and, if necessary, allocates new storage.   

Special Variables and Constants 

MATLAB has a set of special variables (case-sensitive): 

• ans: Temporary variable containing the most recent answer. 

• i and j: the imaginary unit .   

• inf or Inf: the infinity . 

• NaN: stands for Not an Number; indicates an undefined numerical result. 

• pi: the math number  = 3.141592... 

• eps: by default, this variable represents the machine's accuracy in double precision. It 

represents the distance from 1.0 to the next largest double-precision number. On a typical 

machine running a modern Intel processor  = 2.220446049250313e-16 

• realmax: Largest positive floating-point number 

• realmin: Smallest normalized floating-point number 

Copy/paste these examples one by one in the command window, then press Enter to see the 

output after each one: 

d = 1 / 0 

d = Inf 

e = 0 / 0 

e = NaN 

While the above operations will result in an error on a hand-held calculator or in some other 

programming languages, MATLAB can handle results of infinity or undefined values. 

Remember that in other programming languages such as C++ and Java that the range of signed 

integers of type int is -2147483648 to +2147483647. Now, try storing this number in MATLAB: 

g = 4567892345638 

g = 4.5679e+12 

Surprisingly, the variable g was indeed declared, reserved in memory, and stored the number 

. But how could it store an integer value that exceeds the possible range? 
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Use the class command to determine the data type of the variable g 

class(g) 

ans = 'double' 

Remember that MATLAB stores all numeric values by default as double-precision floating point 

numbers. This enables MATLAB to handle much larger range of integers and floating-point numbers. 

This becomes clear knowing that integers are a subset of floating-point numbers. 

The largest/smallest integer number MATLAB can store precisely and exactly in the default 

double floating-point type variable without any errors is . All other 

integers stored in MATLAB above or below this number are not exact integers. You should review 

the IEEE 754 standard which you have studied in the Computer Organization and Design course to 

know why.  

Working with Complex Numbers 

We have already introduced that the letters i and j are predefined variables in MATLAB to represent 

the imaginary number . Note that you don't need a multiplication sign between the number and 

the imaginary unit i or  j. Copy/paste these examples one-by-one in the command window, then 

press Enter to see the output after each one. 

a = 1 +1j 

a = 1.0000 + 1.0000i 

b = 5 + 6i 

b = 5.0000 + 6.0000i 

c = a + b 

c = 6.0000 + 7.0000i 

When you are going to use i or j with any constant to represent a complex number, you must write 

the imaginary value without a multiplication sign. Even if the value is , it is recommended to 

explicitly precede it with 1, so it looks like 1i or 1j.  

The above recommendation is important. Sometimes, you might by mistake override the variables i 

and j by any other value and MATLAB allows that without issues! 

i = 2 

i = 2 

j = 3 

j = 3 
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To restore the values of i and j to the default , simply delete the variables by using the clear 

command and MATLAB will revert to the original meaning. 

clear i j 

As long as you don't override the values of i and j, these numbers are all complex.  

clear i j 

a1 = 1 + i       % COMPLEX 

a1 = 1.0000 + 1.0000i 

b1 = 1 + 1i      % COMPLEX 

b1 = 1.0000 + 1.0000i 

c1 = 1 + 1 * i   % COMPLEX 

c1 = 1.0000 + 1.0000i 

d1 = 1 + 2i      % COMPLEX 

d1 = 1.0000 + 2.0000i 

e1 = 1 + 2 * i   % COMPLEX 

e1 = 1.0000 + 2.0000i 

f1 = 5 + 6j      % COMPLEX 

f1 = 5.0000 + 6.0000i 

g1 = 5 + 6*j     % COMPLEX 

g1 = 5.0000 + 6.0000i 

However, once you override the default imaginary numbers with other values, the same expressions 

will be interpreted differently.  Consider: 

i = 1           % Overriding i and j 

i = 1 

j = 3 

j = 3 

a2 = 1 + i       % NOT COMPLEX 

a2 = 2 
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b2 = 1 + 1i      % COMPLEX 

b2 = 1.0000 + 1.0000i 

c2 = 1 + 1 * i   % NOT COMPLEX 

c2 = 2 

d2 = 1 + 2i      % COMPLEX 

d2 = 1.0000 + 2.0000i 

e2 = 1 + 2 * i   % NOT COMPLEX 

e2 = 3 

f2 = 5 + 6j      % COMPLEX 

f2 = 5.0000 + 6.0000i 

g2 = 5 + 6*j     % NOT COMPLEX 

g2 = 23 

Notice that whenever you place a multiplication sign between the imaginary variable i or j and its 

coefficient, MATLAB no longer interpret i and j as . Instead, they are considered as real-

numbered variables and MATLAB uses the new overridden values. Also, if the imaginary coefficient 

is 1 and you forget to explicitly  write the imaginary part as 1i or 1j, then in this case, the overridden 

value of i or j will be used. 

The order of precedence will yield different values if you are not too careful in writing your 

expressions. Consider: 

clear i j   % ensure default imaginary values are in use  

a = 9/2*i   % a = 4.5i 

a = 0.0000 + 4.5000i 

b = 9/2i    % b = -4.5i 

b = 0.0000 - 4.5000i 

MATLAB treats the first expression as having three terms and will evaluate the expression according 

to the rules of precedence. Since division and multiplication have equal precedence, the expression 

will have the same result as: 

a = (9/2)*i % a = 4.5i 

a = 0.0000 + 4.5000i 

Yet, MATLAB treats the second expression as having two terms only (due to the absence of the 

multiplication sign), so the second expression is basically the same as: 
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b = 9 /(2i) % b = -4.5i 

b = 0.0000 - 4.5000i 

Perhaps a direct way to create MATLAB variable is by using MATLAB complex built-in function. If we 

represent a complex number as a + bi, then we can create a complex number by writing complex(a, 

b) 

complex(5, 10)   % This is equivalent to 5 + 10i 

ans = 5.0000 + 10.0000i 

Complex Number Functions 

While working with complex numbers, there are five main functions that we might frequently need. 

Splitting the imaginary and real parts. Determining the complex conjugate, and most importantly 

computing the magnitude and angle of the complex vector. Remember that a complex number a + bi 

can be projected on the complex plane as: 

 

 

MATLAB has all these operations as built-in functions. The following example illustrates how to use 

them: 

a = 5+3j 

a = 5.0000 + 3.0000i 

b = complex(7, -8) 

b = 7.0000 - 8.0000i 

 

abs(a)      % Magnitude of a complex number 

ans = 5.8310 
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abs(b) 

ans = 10.6301 

angle(a)    % Phase angle of complex number (in RADIANs) 

ans = 0.5404 

angle(b) 

ans = -0.8520 

conj(a)     % Complex Conjugate 

ans = 5.0000 - 3.0000i 

conj(b) 

ans = 7.0000 + 8.0000i 

real(a)     % Extract real part of complex number 

ans = 5 

real(b) 

ans = 7 

imag(a)     % Extract imaginary part of complex number 

ans = 3 

imag(b) 

ans = -8 

 

MATLAB Built-in Mathematical Functions 

MATLAB supports lots of common mathematical functions. We provide a listing of the major ones 

which you already know from algebra and calculus courses.  

Please note that the TRIGONOMETRIC FUNCTIONS IN MATLAB USE RADIAN MEASURE by 

default. 
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Let’s try some of these functions: 

a = sqrt(9) 

a = 3 

b = sqrt(-16)      % returns a complex number 0 + 4i 

b = 0.0000 + 4.0000i 

Since , then  

c = log10(100)    

c = 2 

and  

d = log(exp(3)) 

d = 3 

But what if we need to find the natural logarithm for a base different than  or ? In this case, we 

need to use mathematical rules: 

 

so if you need to compute  which can be easily computed in MATLAB as: 

log10(6) / log10(3) 

ans = 1.6309 

As we know, , attempting this directly in MATLAB will yield the wrong result: 

sin(30) 

ans = -0.9880 

Remember, trigonometric functions in MATLAB use RADIAN as function input by default, so you 

must convert the value from decimal to RADIAN by multiplying it by : 

sin(30*pi/180) 

ans = 0.5000 
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Similarly, we know that , attempting this directly in MATLAB will yield the result in 

radian: 

acos(0.5) 

ans = 1.0472 

so don't forget to correct the output - if necessary - by converting it to decimal by multiplying it by 

:  

acos(0.5)*180/pi 

ans = 60.0000 

If you wish to have the square of a trigonometric function, say , then the correct way to do it 

is to square the whole function in MATLAB, as in  

Finally, we already learnt that using the function with complex numbers returns the magnitude 

of the complex numbers. You can use the  function with real numbers as well, in this case, it 

means the absolute value , try: 

abs(-5) 

ans = 5 

Numeric Display Formats   

MATLAB's format command gives us control on HOW TO DISPLAY the output numbers. They DO 

NOT change the actual accuracy of the number stored in memory. Just what you see on the screen. 

Some formatting commands affect the look and feel of the workspace (e.g. line spacing). The 

following table lists all available output formatting commands: 

 

The format compact and loose functions control the line spacing in the command window. 
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Let's try few of them with the number  

format short 

pi 

ans = 3.1416 

format long 

pi 

ans =  

   3.141592653589793 

format short e 

pi 

ans =  

   3.1416e+00 

format long e 

pi 

ans =  

     3.141592653589793e+00 

format bank 

pi 

ans =  

     3.14 

format + 

pi 

ans =  

+ 

format rat 

pi 

ans =  

     355/113    

format hex       % Hexadecimal representation 

pi 

ans =  

   400921fb54442d18 

format           % Resets to the default formatting 
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Discrete Mathematics in MATLAB 

In the previous experiment, we learnt how to do various vector and matrix operations such as logical, 

arithmetic, and other manipulations. We mostly applied basic trigonometric and linear algebra math. 

In this section, we will learn how to handle mathematical sets in the same way you learnt in basic 

math and discrete math courses.  

Sets in MATLAB 

MATLAB allows users to enter mathematical sets as a vector or a matrix (array) - more on vectors 

and matrices later. For example, lets generate the two mathematical sets  and : 

 

 

as two vectors:  

S1 = [1, 5, 4, 6 ,7 ,7, 3, 5, 2, 8, 0, 1, 1, 2, 7, 8 ,5, 4, 2, 4, 1, 4]; 

S2 = [0, 9, 8, 9, 9, 7, 3, 10, 5, 3, 6, 2, 4, 1, 1, 1, 11, 3]; 

To extract the numbers that occur in the set without any repetitions; that is to extract the unique 

numbers in the set, use the function unique:  

unique(S1) 

ans = 1×9 

     0     1     2     3     4     5     6     7     8 

unique(S2) 

ans = 1×12 

     0     1     2     3     4     5     6     7     8     9    10    11 

The function unique returns the existing elements in the set in sorted ascending order. If you wish to 

see the unique numbers in the set in the order they appear in, then use: 

unique(S1, 'stable') 

ans = 1×9 

     1     5     4     6     7     3     2     8     0 

To merge two sets together; that is, to perform the operation , use the union command: 

union(S1, S2) 

ans = 1×12 

     0     1     2     3     4     5     6     7     8     9    10    11 
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The union commands can work with sets stored in matrices of different sizes and shapes. There is 

no need for the vectors or matrices to match each other's dimensions. 

To find the elements that appear in both sets; that is, to perform the operation , use the 

intersect command: 

intersect(S1, S2) 

ans = 1×9 

     0     1     2     3     4     5     6     7     8 

The default output is sorted in ascending order, unless you use 'stable' as before.  

To see the elements that exist in one set but not the other, use set difference command setdiff. 

Note that the order you use in performing this operation matters: 

setdiff(S1, S2)     % All elements in S1 appear in S2, so set difference is 

empty 

ans = 

 

  1×0 empty double row vector 

setdiff(S2, S1) 

ans = 1×3 

     9    10    11 

Another method to check if an element exists in a set is to use the ismember command. It returns 

logical  if the number does not exist in the set, and otherwise. To check if the numbers 5, 8, 10 

and 15 exist in : 

ismember([5, 8, 10, 15], S1) 

ans = 1×4 logical array 

   1   1   0   0 

Discrete Mathematics 

MATLAB has extremely powerful functions in the domain of discrete mathematics. We list them in 

the following table: 
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Let's try few examples. To list all prime numbers under 50, write: 

primes(50) 

ans = 1×15 

     2     3     5     7    11    13    17    19    23    29    31    37    

41 ⋯ 

The  prime number is: 

nthprime(100) 

ans = 541 

To factor the number  into its factors, use: 

factor(567840) 

ans = 1×10 

     2     2     2     2     2     3     5     7    13    13 

The least common multiple of  is: 

lcm(10, 6) 

ans = 30 

To list all possible combinations of the numbers , use the function perms: 

perms([3, 7, 9]) 
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ans = 6×3 

     9     7     3 

     9     3     7 

     7     9     3 

     7     3     9 

     3     9     7 

     3     7     9 

Performance Timing in MATLAB 

Many times, we are not only interested in writing a correct code, but also an efficient code. 

Performance timing is important in order to compare how much time has lapsed in writing two 

versions of the same function or algorithm.  

There are many ways to profile the timing of your code. but we will only explain a simple one: 

• Use the tic and toc commands at the beginning and end of the function you want to profile. 

Once you execute the toc command, the elapsed time will appear. (RECOMMENDED) 

tic 

% Your algorithm goes here, do something 

toc 

Elapsed time is 0.001809 seconds. 

NOTE: Usually, we do not profile the execution time based on a single execution. We place 

our function or algorithm in a loop and run it hundreds of times, then we take the average of 

execution times.  

We shall learn about more MATLAB tools for code timing and profiling in the next experiment. 

Number Rounding and Rational Fraction Approximation 

MATLAB also offers functions that perform the rounding operations that you are familiar with from 

math or previous programming courses. We summarize these functions in the following table: 

 

The ceil and floor functions are the ones with the math symbols and , respectively. The 

fix function returns the number closest to zero. The differences are clearer when comparing the 

results of positive and negative numbers. The sign function is a very useful function which returns 

the signs of the input number(s). We show some insightful examples in the following figure: 
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The rounding function round has different syntax for different cases; the default syntax takes one 

input (the number to be rounded) and works at the “half digit”  boundary. Positive numbers with 

fractional parts 0.5 - 0.99... get rounded to the next largest number; otherwise, they get rounded to 

the lower integer value. Negative numbers rounding works in reverse. Consult the examples in the 

table above. 

Let us try few rounding examples; let's round the number: : 

round(67585.891)        % Default roundig behaviour 

ans = 67586 

If we want to round to one decimal point: 

round(67585.891, 1)      

ans = 6.7586e+04 

Notice that the result is given in engineering format, and that we cannot see the effect clearly. 

Precede the round command with format long 

format long  

round(67585.891, 1)  

ans =  

     6.758589999999999e+04 

  

Notice that we expect the result to be 67585.9 yet MATLAB returns a result of 67585.899999999….. 

This is due to the IEEE 754 standard and hardware design of floating-point units inside computers 
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which does not always allow us to represent floating-point error precisely. We shall discuss this in 

detail in a future experiment.  

and to two decimal points: 

format long 

round(67585.891, 2) 

ans =  

     6.758589000000000e+04 

  

Notice that we expect the result to be 67585.89 and MATLAB indeed returns the correct result. 

Alternatively, one can round to the nearest 10 or nearest 100 or 1000 by writing: 

round(67585.891, -1) 

ans =  

       67590 

  

round(67585.891, -2) 

ans =  

       67600 

  

round(67589.891, -3) 

ans =  

       68000 

  

Commands for Managing the Work Session 

In this section, we will present commands that are quite useful in managing your workspace.  

We already know that all variables you declare in any MATLAB session can be found under the 

Workspace window (default location --> left pane). You can also list the session variables in the 

command window by using this command: 

who 

Your variables are: 

 

S1   a    a2   b    b2   c1   d    d2   e1   f1   g    g2    

S2   a1   ans  b1   c    c2   d1   e    e2   f2   g1    

If you need further details about your variables, you can use: 
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whos 

  Name      Size            Bytes  Class     Attributes 

 

  S1        1x22              176  double               

  S2        1x18              144  double               

  a         1x1                 8  double               

  a1        1x1                16  double    complex    

  a2        1x1                 8  double               

  ans       1x1                 8  double               

  b         1x1                16  double    complex    

  b1        1x1                16  double    complex    

  b2        1x1                16  double    complex    

  c         1x1                 8  double               

  c1        1x1                16  double    complex    

  c2        1x1                 8  double               

  d         1x1                 8  double               

  d1        1x1                16  double    complex    

  d2        1x1                16  double    complex    

  e         1x1                 8  double               

  e1        1x1                16  double    complex    

  e2        1x1                 8  double               

  f1        1x1                16  double    complex    

  f2        1x1                16  double    complex    

  g         1x1                 8  double               

  g1        1x1                16  double    complex    

  g2        1x1                 8  double               

Notice, that the size of most variables we used thus far is listed as 1x1. This is because all our 

variables are scalars (not vectors nor matrices (arrays), just single-valued numbers). Even the 

complex numbers have a size of 1x1 as they are treated as one unit. This size attribute is different 

than the actual size these variables take inside the memory. You can find the memory size under 

Bytes. Since most our variables are double-precision floating-point numbers, we expect they will use 

8 bytes, and complex numbers will take 16 bytes to store both the real and imaginary parts. You can 

find the data type of your variables under the Class attribute.  

In huge projects, you might lose track of variables. You might forget if you have used the variable 

'num' for example, and you don't need to override it and cause errors in your program. To check if a 

variable exists, use the exist function. It takes in ONE variable name in single quotations or directly 

listed next to it. It returns  or  depending if the variable exists or not. 

exist('num') 

ans =  

     0 

exist a 

ans =  

     1 

To delete variables from the workspace, use clear then list the variable names to be deleted. Let's 

delete variables a, b, c, and d. 
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exist a 

ans =  

     1 

clear a b c d 

exist a  

ans =  

     0 

To clear all variables in the workspace, simply write clear on its own: 

clear 

To clear the content of the command window, simply use: 

clc 

The above command does not delete the history of your commands, only the command window. 

You can still see all previous commands by pressing the UP button or writing commandhistory.  

When you are writing large MATLAB scripts and functions (discussed in later experiments), you are 

only interested in the final output. To suppress (hide) the output of MATLAB lines, use the semicolon 

at the end. Compare: 

a = (5 + 4j)*(6 - 2j) 

a =  

 38.000000000000000 +14.000000000000000i 

  

b = (7 + 6j)*(7 - 9j); 

In both cases, the output is computed and stored in the variables a and b. In the first case, MATLAB 

shows the output in the command window, while in the latter case, the semicolon suppressed the 

output from showing. To see the output of the variable b, you can either type the variable directly: 

b 

b =  

      1.030000000000000e+02 - 2.100000000000000e+01i 

  

or use the display disp() function: 

disp(b) 

      1.030000000000000e+02 - 2.100000000000000e+01i 
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When you are writing long lines in MATLAB, and you wish to continue writing on the next line, you 

can use the Ellipsis (three dots ...) 

1245 + 86844 + 767683 + 34334 + ... 

456  + 97800    

ans =  

      988362 

  

You can automatically capture and log (store) all entered command, keyboard input and command 

window output using the diary command by using it with the on and off switches. MATAB will 

create a text file called diary in the working directory that contains all session command window 

interactions. 

diary on 

% Some commands 

diary off 

You can also display the content of text files inside MATLAB's command window by using the type 

command. MATLAB will look for the supplied filename inside the current path (working directory), or 

any added path. Otherwise, you need to provide the full path to the type command: 

type sampleNumbers.txt 

0.0975    0.1576    0.1419    0.6557    0.7577    0.7060    0.8235    0.4387 

0.2785    0.9706    0.4218    0.0357    0.7431    0.0318    0.6948    0.3816 

0.5469    0.9572    0.9157    0.8491    0.3922    0.2769    0.3171    0.7655 

0.9575    0.4854    0.7922    0.9340    0.6555    0.0462    0.9502    0.7952 

0.9649    0.8003    0.9595    0.6787    0.1712    0.0971    0.0344    0.1869 

The file sampleNumbers.txt contains a few lines of numbers that can be printed inside the 

command window.  

To quit MATLAB from the command line, simply write quit. 

quit 

MATLAB Help and Documentation 

MATLAB has an extensive well-written documentation with numerous examples as well an online 

MATLAB answers forum. In MATLAB, there are two options to access info on all commands: a quick 

help command and another for full documentation. For example, if you need to quickly see the 

function and syntax of a MATLAB command, type help followed by the command name, and a short 

documentation will appear inside the command window and it will list all available MATLAB 

commands that handle binary numbers one way or another: 

help format 

 format Set output format. 

    format with no inputs sets the output format to the default appropriate 
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    for the class of the variable. For float variables, the default is 

    format SHORT. 

  

    format does not affect how MATLAB computations are done. Computations 

    on float variables, namely single or double, are done in appropriate 

    floating point precision, no matter how those variables are displayed.  

    Computations on integer variables are done natively in integer. Integer 

    variables are always displayed to the appropriate number of digits for 

    the class, for example, 3 digits to display the INT8 range -128:127. 

    format SHORT and LONG do not affect the display of integer variables. 

  

    format may be used to switch between different output display formats 

    of all float variables as follows: 

      format SHORT     Short fixed point format with 4 digits after the  

                       decimal point. 

      format LONG      Long fixed point format with 15 digits after the  

                       decimal point for double values and 7 digits after  

                       the decimal point for single values. 

      format SHORTE    Short scientific notation with 4 digits after the  

                       decimal point. 

      format LONGE     Long scientific notation with 15 digits after the  

                       decimal point for double values and 7 digits after  

                       the decimal point for single values. 

      format SHORTG    Short fixed format or scientific notation,  

                       whichever is more compact, with a total of 5 digits. 

      format LONGG     Long fixed format or scientific notation, whichever 

                       is more compact, with a total of 15 digits for  

                       double values and 7 digits for single values. 

      format SHORTENG  Engineering format with 4 digits after the decimal 

                       point and a power that is a multiple of three. 

      format LONGENG   Engineering format that has exactly 15 significant 

                       digits and a power that is a multiple of three. 

  

    format may be used to switch between different output display formats 

    of all numeric variables as follows: 

      format HEX       Hexadecimal format. 

      format +         The symbols +, - and blank are printed  

                       for positive, negative and zero elements. 

                       Imaginary parts are ignored. 

      format BANK      Currency format with 2 digits after the decimal  

                       point. 

      format RATIONAL  Approximation by ratio of small integers. Numbers 

                       with a large numerator or large denominator are 

                       replaced by *. 

  

    format may be used to affect the spacing in the display of all 

    variables as follows: 

      format COMPACT  Suppresses extra line-feeds. 

      format LOOSE    Puts the extra line-feeds back in. 

  

If you need to access the full documentation, simply type doc followed by the command name. The 

documentation window will open outside of MATLAB. 

doc format  
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But what if you don't know the command name? How to find a certain command that does a specific 

job you want? In this case, use the command lookfor with one keyword that describes what you 

want, and MATLAB will list all available close commands with a summary of what they do.  

For example, to look for MATLAB commands that can work with binary numbers, simply write: 

lookfor binary 

bsxfun                         - Binary Singleton Expansion Function 

fread                          - Read binary data from file. 

fwrite                         - Write binary data to file. 

bin2dec                        - Convert text representation of binary number to double 

value 

dec2bin                        - Convert decimal integer to its binary representation 

binary                         - Sets binary transfer type. 

binary                         - Sets binary transfer type. 

bsxfun                         - Binary Singleton Expansion Function 

invokeBinaryComparison         - Invokes GE, LT etc. 

bops                           - o = BOPS( obj )  Returns the binary operator nodes in obj 

isbop                          - b = ISBOP( obj )   Boolean array, true if node is binary 

binaryVectorToDecimal          - Convert binary vector to a decimal number. 

binaryVectorToHex              - Convert binary vector to a hexadecimal character string. 

binvec2dec                     - Convert binary vector to decimal number. 

dec2binvec                     - Convert decimal number to a binary vector. 

decimalToBinaryVector          - Convert decimal number to a binary vector. 

hexToBinaryVector              - Convert hex number to a binary vector. 

dspblkbinaryfilereader         - DSP System Toolbox binary file reader block 

dspblkbinaryfilewriter         - DSP System Toolbox binary file writer block 

dec2mvl                        - Convert decimal integer to a binary string. 

fibinscaling                   - Fi Binary Point Scaling Demo 

fiscalingdemo                  - Perform Binary-Point Scaling 

bin                            - Binary representation of stored integer of fi object 

isscalingbinarypoint           - Determine whether fi object has binary point scaling 

BinaryPointScaling             -  

bwarea                         - Area of objects in binary image. 

bwareafilt                     - Extract objects from binary image by size. 

bwareaopen                     - Remove small objects from binary image. 

bwboundaries                   - Trace region boundaries in binary image. 

bwconncomp                     - Find connected components in binary image. 

bwconvhull                     - Generate convex hull image from binary image. 

bwdist                         - Distance transform of binary image. 

bwdist_old                     - Distance transform of binary image. 

bwdistgeodesic                 - Geodesic distance transform of binary image. 

bweuler                        - Euler number of binary image. 

bwfill                         - Fill background regions in binary image. 

bwhitmiss                      - Binary hit-miss operation. 

bwlabel                        - Label connected components in 2-D binary image. 

bwlabeln                       - Label connected components in binary image. 

bwmorph                        - Morphological operations on binary image. 

bwmorph3                       - Morphological operations on binary volume. 

bwpack                         - Pack binary image. 

bwperim                        - Find perimeter of objects in binary image. 

You can see in the list two functions of interest: bin2dec and dec2bin which allows you to convert 

between binary and decimal numbers in text formatting. Try them out.  
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Scalars, Vectors, and Matrices 

In the previous experiment, we have introduced single-valued variables and many of the scalar 

operations associated with them. However, MATLAB really shines when working with vectors and 

matrices. In many other programming languages that you might have learnt already (C++ and Java), 

you stored vectors and matrices inside 1D and 2D arrays, respectively. You conducted all array 

related operations through loops. This is time consuming and error prone.  

In MATLAB, storing vectors and matrices is straightforward through a simple assignment operator. 

Further, all associated operations DO NOT need loops. You can use simple mathematical 

operations almost directly.  

This is one main reason why MATLAB is widely used by millions of engineers and scientists.  
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MATLAB vectors and arrays can hold numbers, characters (array of strings), or logical values (0 or 

1). But an array or matrix CANNOT hold a mix of these types at the same time.  

Previously, when we used the whos command, we noticed that all single-valued variables (scalars) 

had a size of 1x1. MATLAB treats scalars as one-element vectors of size 1x1.  

Vectors 

A vector is simply a one-dimensional matrix. In Physics and Mathematics, and other engineering 

courses, you often worked with vectors that are projected onto a 3D Cartesian coordinate system. 

The vector in this coordinate system is often given as: 

 

where  are the scalar magnitudes of the vector projections onto the Cartesian axes.  

 

Creating Vectors 

In MATLAB, you can easily define a 3D vector in two forms: a row vector or a column vector.  

So, we can write  in row form:  or column form:   as follows: 

Row form (Use commas to separate elements): 

v1 = [5, 8, -9] 

v1 = 1×3 

     5     8    -9 
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Column form (Use semicolons to separate elements): 

v2 = [5; 8; -9] 

v2 = 3×1 

     5 

     8 

    -9 

You can convert between column and row vectors using the transpose operator ('), for example: 

v3 = [5, 8, -9]'    % Creates a column vector by transposing a row vector  

v3 = 3×1 

     5 

     8 

    -9 

v4 = [5; 8; -9]'    % Creates a row vector by transposing a column vector  

v4 = 1×3 

     5     8    -9 

v5 = v3'            % Creates a column vector by transposing a row vector  

v5 = 1×3 

     5     8    -9 

Vectors are not restricted to 3-elements. You can create row or column vectors of any size . Use 

whos command with the variable name to see detailed info about the vector variable.  

v6 = [0.5, 6, 9, 0, 0, 12, -8, 8]       % This is a 1x8 row vector 

v6 = 1×8 

    0.5000    6.0000    9.0000         0         0   12.0000   -8.0000 ⋯ 

whos v6 

  Name      Size            Bytes  Class     Attributes 

  v6        1x8                64  double               

 

v7 = [0.9; 0; 0; 9; -9; 1; -3; 6]       % This is a 8x1 column vector 

v7 = 8×1 

    0.9000 

         0 

         0 

    9.0000 

   -9.0000 

    1.0000 

   -3.0000 

    6.0000 
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whos v7 

  Name      Size            Bytes  Class     Attributes 

 

  v7        8x1                64  double               

Note that unlike C++ or Java, we did not need to declare and reserve memory for a 1D array then 

use loops to store elements in the 1D array. It is straightforward and simple.  

Appending Vectors 

You can create vectors from other vectors by appending them together. The only condition is that 

these vectors are of the same data type and shape; that is, you can only append row vectors 

together, or column vectors together, but not both. 

Let's append the row vector  with the row vector  (as before, use the comma in creating row 

vectors): 

v8 = [v1, v6] 

v8 = 1×11 

    5.0000    8.0000   -9.0000    0.5000    6.0000    9.0000         0 ⋯ 

Let's append the column vector  with the column vector  (as before, use the semicolon in 

creating column vectors): 

v9 = [v2; v7] 

v9 = 11×1 

    5.0000 

    8.0000 

   -9.0000 

    0.9000 

         0 

         0 

    9.0000 

   -9.0000 

    1.0000 

   -3.0000 

Appending row and column vectors will result in an error, try: 

[v1, v7] 

[v1; v7] 

You can append row vectors with column vectors ONLY if you transpose one of them to match the 

other, try: 

v10 = [v1, v7']     % Appending into row vector 

v10 = 1×11 

    5.0000    8.0000   -9.0000    0.9000         0         0    9.0000 ⋯ 
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v11 = [v2; v6']     % Appending into column vector 

v11 = 11×1 

    5.0000 

    8.0000 

   -9.0000 

    0.5000 

    6.0000 

    9.0000 

         0 

         0 

   12.0000 

   -8.0000 

      ⋮ 

Useful techniques for creating large vectors 

Many times, you will work with vectors of hundreds or thousands of elements. Hand entry is 

impossible.  

If you want to create a vector with regularly spaced elements, use the colon (:). The syntax is 

 where: 

•  is the starting point. 

•   is the spacing between elements. 

•   is the upper limit (not necessarily the last element, but the last element will not exceed ). 

if  is an integer multiple of , then  will be the last element.  

In this syntax, the number of elements is given by: 

 

v12 = [0: 2: 8] 

v12 = 1×5 

     0     2     4     6     8 

v13 = [0: 2: 7] 

v13 = 1×4 

     0     2     4     6 

v14 = [1: 1: 10] 

v14 = 1×10 

     1     2     3     4     5     6     7     8     9    10 

Notice that if don't specify a value for the increment , the default value is . 
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v15 = [1:10] 

v15 = 1×10 

     1     2     3     4     5     6     7     8     9    10 

The increment  can be a floating-point number, or negative: 

v16 = [0: 0.25: 4] 

 

v16 = 1×17 

         0    0.2500    0.5000    0.7500    1.0000    1.2500    1.5000 ⋯ 

v17 = [10: -2: -10] 

v17 = 1×11 

    10     8     6     4     2     0    -2    -4    -6    -8   -10 

To retrieve the number of elements in a vector, use the length command: 

length(v12) 

ans = 5 

length(v16) 

ans = 17 

If you need to create a vector with  elements, and you know the starting and ending points, but not 

the exact spacing, you can use the linspace command. It has the syntax:  

 

The increment is automatically computed and is equal to: 

 

v18 = linspace(5, 8, 31) 

v18 = 1×31 

    5.0000    5.1000    5.2000    5.3000    5.4000    5.5000    5.6000 ⋯ 

The above command is similar to: 

v19 = [5:0.1:8] 

v19 = 1×31 

    5.0000    5.1000    5.2000    5.3000    5.4000    5.5000    5.6000 ⋯ 

In engineering problems, sometimes we need entries with logarithmic spacing instead of regular 

(fixed) spacing. In this case, we can use the logspace command. By default, this command creates 
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 elements unless the number of entries is specified. The elements lie between  and , 

where  and  are user defined. 

v20 = logspace(1,5)     % creates 50 elements between 10 and 100000 

v20 = 1×50 

105 × 

    0.0001    0.0001    0.0001    0.0002    0.0002    0.0003    0.0003 ⋯ 

 

Notice that the above command provides the results in engineering notation misleading you to think 

that some elements are identical (e.g., 0.0001). In fact, if you change the display format to long you 

will see more digits of the generated number. 
 

v21 = logspace(1,5, 5)  % creates  5 elements between 10 and 100000 

v21 = 1×5 

          10         100        1000       10000      100000 

Matrices 

MATLAB matrices are similar in notion to 2D matrices in C++ and Java; albeit, much simpler to use. 

A matrix consists of both rows and columns. Therefore, a vector is a special case of a matrix that 

has either one row or one column.  

To create a matrix in MATLAB, elements of each row are separated by a comma (,), and rows are 

separated by a semicolon. To save this matrix into variable : 

 

M = [2 4 10 3; -9 0 6 7; 1 4 12 6] 

M = 3×4 

     2     4    10     3 

    -9     0     6     7 

     1     4    12     6 

You can retrieve the dimensions of the matrix by using the size function. It will return the number of 

rows and column, respectively. In this case, the size of  is 3x4. 

size(M) 

ans = 1×2 

     3     4 

To retrieve the total number of elements in the matrix, use the numel command (short for number of 

elements). You can use this command with vectors as well, and in this specific case it will be 

equivalent to the length command . 
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numel(M) 

ans = 12 

Suppose we have two matrices: 

 

K = [1, 4, 6, 3 ; -6, 0, 6, 7] 

K = 2×4 

     1     4     6     3 

    -6     0     6     7 

L = [2, 5, 17, 8; -1, 4, 4, 0] 

L = 2×4 

     2     5    17     8 

    -1     4     4     0 

You can concatenate the two matrices horizontally or vertically only if they match each other in the 

number of elements along the side you wish to concatenate them in. 

We can concatenate matrices and  vertically in three different ways: 

V1 = [K; L]             % Using the semicolon 

V1 = 4×4 

     1     4     6     3 

    -6     0     6     7 

     2     5    17     8 

    -1     4     4     0 

V2 = vertcat(K, L)      % Using the explicit vertical concatenation 

V2 = 4×4 

     1     4     6     3 

    -6     0     6     7 

     2     5    17     8 

    -1     4     4     0 

V3 = cat(1,K,L)         % Using the generic concatenate function. 1 means 

vertical concatenate, 2 horizontal 

V3 = 4×4 

     1     4     6     3 

    -6     0     6     7 

     2     5    17     8 

    -1     4     4     0 
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We can concatenate matrices and  horizontally in three different ways: 

H1 = [K, L]             % Using the colon 

H1 = 2×8 

     1     4     6     3     2     5    17     8 

    -6     0     6     7    -1     4     4     0 

H2 = horzcat(K, L)      % Using the explicit horizontal concatenation 

H2 = 2×8 

     1     4     6     3     2     5    17     8 

    -6     0     6     7    -1     4     4     0 

 

 

H3 = cat(2,K,L)         % Using the generic concatenate function. 1 means 

vertical concatenate, 2 horizontal 

H3 = 2×8 

     1     4     6     3     2     5    17     8 

    -6     0     6     7    -1     4     4     0 

Vector and Matrix Indexing and Addressing 

The most important rule which you must never forget is that MATLAB indices always start from 

ONE, not 0. 

myVector = [2 : 0.5: 5] 

myVector = 1×7 

    2.0000    2.5000    3.0000    3.5000    4.0000    4.5000    5.0000 

To access the first, fifth, and last elements in this vector, one can write: 

myVector(1) 

ans = 2 

myVector(5) 

ans = 4 

myVector(numel(myVector)) 

ans = 5 

You can retrieve any element in an array either using linear indexing or subscript indexing.  In 

linear indexing, you can think of the array as consecutive columns whose elements are numbered 

from 1 to . Subscript indexing is similar to the one you use in C++ and Java, with the only 

difference that indices start from 1 not 0. 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 10 of 31 
 
 

 

So, in the previous example with the matrices  and , one can access the element 0 in matrix  

by either: 

K(4) 

ans = 0 

K(2,2) 

ans = 0 

To replace the last element in matrix  by 5, one can write: 

L(numel(L)) = 5 

L = 2×4 

     2     5    17     8 

    -1     4     4     5 

L(2,4) = 5 

L = 2×4 

     2     5    17     8 

    -1     4     4     5 

The colon (:) operator is used to access a range of indices. For example, to retrieve all elements in 

matrix , one can write: 

K(:) 

ans = 8×1 

     1 

    -6 

     4 

     0 

     6 

     6 

     3 

     7 
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To retrieve only the second row in matrix , one can write: 

K(2, :)     % This means access the second row, and retrieve all its elements. 

ans = 1×4 

    -6     0     6     7 

To retrieve the middle two columns in array : 

K(:, 2:3) 

ans = 2×2 

     4     6 

     0     6 

This means access all columns from 2 to 3, and retrieve all rows. 

To delete the last column in matrix , one can write: 

disp(L) 

     2     5    17     8 

    -1     4     4     5 

L(:, 4) = [] 

L = 2×3 

     2     5    17 

    -1     4     4 

This means, delete all elements in the fourth column.  

Suppose the matrix A is given as:  

A = [21, 53, 17, 58, 60; ... 

     17, 48, 94, 70, 99; ... 

     15, 44, 14, 37, 19; ... 

     68, 78, 88, 80, 15; ... 

     11, 58, 77, 10, 23; ... 

     32, 26, 78, 79, 10] 

A = 6×5 

    21    53    17    58    60 

    17    48    94    70    99 

    15    44    14    37    19 
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    68    78    88    80    15 

    11    58    77    10    23 

    32    26    78    79    10 

To access the inner elements without the border elements, one can write: 

A(2:5, 2:4) 

ans = 4×3 

    48    94    70 

    44    14    37 

    78    88    80 

    58    77    10 

Also note how we used the ellipses (...) to write the array in a more eye-friendly way. 

Special MATLAB Vectors and Matrices 

MATLAB has functions to create special vectors and matrices that are useful in many instances.  

The first matrix is an ALL-ones matrix. A matrix whose elements are initialized to the value 1. The 

second matrix is an ALL-zeros matrix whose elements are initialized to the value of 0.  

You can create row vectors, column vectors, or matrices by passing the number of rows and 

columns to the function. If you pass one argument , the function will generate a square matrix of 

size .  

ones(1,4) 

ans = 1×4 

     1     1     1     1 

ones (3,1) 

ans = 3×1 

     1 

     1 

     1 

ones(2,3) 

ans = 2×3 

     1     1     1 

     1     1     1 

ones(3)   % Supplying one input n creates a square array of that number nxn 

ans = 3×3 

     1     1     1 

     1     1     1 

     1     1     1 

You can do the same as above using the zeros function: 
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zeros(1,4) 

ans = 1×4 

     0     0     0     0 

zeros (3,1) 

ans = 3×1 

     0 

     0 

     0 

 

 

 

zeros(2,3) 

ans = 2×3 

     0     0     0 

     0     0     0 

zeros(3)   % Supplying one input n creates a square array of that number nxn 

ans = 3×3 

     0     0     0 

     0     0     0 

     0     0     0 

The identity matrix is a matrix whose diagonal is ones while all other elements are zero. Remember, 

that multiplying any SQAURE matrix with a SQAURE identity matrix results in the same original 

matrix.  Use the eye function to create identity matrices.  

eye (4) 

ans = 4×4 

     1     0     0     0 

     0     1     0     0 

     0     0     1     0 

     0     0     0     1 

You can also create rectangular identity matrices. In these matrices, columns whose elements don't 

fall on the diagonal are zeroed out. 

eye(2, 3) 

ans = 2×3 

     1     0     0 

     0     1     0 

Block diagonal matrices combine multiple arrays together but aligns them diagonally. All remaining 

empty matrix locations are filled with zero. To do this in MATLAB: 
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A1 = ones(2,2); 

A2 = 2*ones(3,2); 

A3 = 3*ones(2,3); 

B = blkdiag(A1,A2,A3) 

B = 7×7 
     1     1     0     0     0     0     0 

     1     1     0     0     0     0     0 

     0     0     2     2     0     0     0 

     0     0     2     2     0     0     0 

     0     0     2     2     0     0     0 

     0     0     0     0     3     3     3 

     0     0     0     0     3     3     3 

  

A magic matrix is a special matrix with interesting mathematical properties: 

• It is a square matrix of size , and  

• All elements in the matrix fall between 1 and  

• All rows and all column elements sum to the same value 

magic(3) 

ans = 3×3 
     8     1     6 

     3     5     7 

     4     9     2 

  

Matrix Manipulation 

Similar to vectors, you can perform the matrix transpose operation where rows become columns.  

For example: 

 

M = [2 4 10 3; -9 0 6 7; 1 4 12 6] 

M = 3×4 
     2     4    10     3 

    -9     0     6     7 

     1     4    12     6 

  

And one can obtain its transpose as: 
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transpose(M) 

ans = 4×3 
     2    -9     1 

     4     0     4 

    10     6    12 

     3     7     6 

  

or simply by using the (') operator: 

M' 

 
 

ans = 4×3 
     2    -9     1 

     4     0     4 

    10     6    12 

     3     7     6 

  

If you have a matrix and wish to create another matrix out of its replicas, you can use the repmat 

command. In this command, you specify how many times is the matrix replicated horizontally, then 

vertically, respectively. 

repmat(M, 2, 3) 

ans = 6×12 
     2     4    10     3     2     4    10     3     2     4    10     3 

    -9     0     6     7    -9     0     6     7    -9     0     6     7 
     1     4    12     6     1     4    12     6     1     4    12     6 

     2     4    10     3     2     4    10     3     2     4    10     3 

    -9     0     6     7    -9     0     6     7    -9     0     6     7 

     1     4    12     6     1     4    12     6     1     4    12     6 

  

A similar command is repeat elements repelem. It works on vectors and matrices. 

Suppose we have a small vector of three values  and you wish to repeat each element 

three times: 

repelem([1, 0.5 0], 3) 

ans = 1×9 
    1.0000    1.0000    1.0000    0.5000    0.5000    0.5000         0         

0         0 
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To repeat each element in matrix three times horizontally, and two times vertically, one can write: 

repelem(M,3,2) 

ans = 9×8 
     2     2     4     4    10    10     3     3 

     2     2     4     4    10    10     3     3 

     2     2     4     4    10    10     3     3 

    -9    -9     0     0     6     6     7     7 

    -9    -9     0     0     6     6     7     7 

    -9    -9     0     0     6     6     7     7 

     1     1     4     4    12    12     6     6 

     1     1     4     4    12    12     6     6 

     1     1     4     4    12    12     6     6 

  

You can reshape a matrix by using the reshape command which takes in as input a matrix, and the 

dimensions of its new shape.  

reshape(M, 6, 2) 

ans = 6×2 
     2    10 

    -9     6 

     1    12 

     4     3 

     0     7 

     4     6 

  

However, the number of elements in the new shape must be the same as in the old matrix. 

Otherwise, MATLAB will issue an error. 

reshape(M, 5, 3) % No. of elements 15 instead of 12, FAIL 

The command circshift (A, K, dim) circularly shifts the elements in matrix A by K positions. The 

parameter dim specifies if one wishes to do the circular shift on the rows (dim = 1), or columns (dim 

= 2). These are the rules of how this command works: 

• If K is positive,  dim = 1, rows move downward 

• If K is negative, dim = 1, rows move upward 

• If K is positive,  dim = 2, columns move left 

• If K is negative, dim = 2, columns move right 

circshift(M,  1, 1) 

ans = 3×4 
     1     4    12     6 

     2     4    10     3 

  -9     0     6     7 
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circshift(M, -1, 1) 

ans = 3×4 
    -9     0     6     7 

     1     4    12     6 

     2     4    10     3 

  

circshift(M,  1, 2) 

ans = 3×4 
     3     2     4    10 

     7    -9     0     6 

     6     1     4    12 

  

circshift(M, -1, 2) 

ans = 3×4 
     4    10     3     2 

     0     6     7    -9 

     4    12     6     1 

  

You can rotate any vector or matrix counter-clockwise by  or its multiples by using the rot90 

command: 

rot90(M, 1)     % Rotate M counter-clockwise by 90  degrees 

ans = 4×3 
     3     7     6 

    10     6    12 

     4     0     4 

     2    -9     1 

  

rot90(M, 3)     % Rotate M counter-clockwise by 90 x 3 = 270  degrees 

ans = 4×3 
     1    -9     2 

     4     0     4 

    12     6    10 

     6     7     3 

  

You can flip arrays either around their central row or column using two flip commands: 
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fliplr(M)       % Flip array left to right 

ans = 3×4 
     3    10     4     2 

     7     6     0    -9 

   6    12     4     1 

flipud(M)       % Flip array yp to down 

ans = 3×4 
     1     4    12     6 

    -9     0     6     7 

     2     4    10     3 

  

To extract the diagonal elements of the matrix, simply use the diag command: 

diag(M) 

ans = 3×1 
     2 

     0 

    12 

  

Sorting Vectors and Matrices 

sort(A) sorts the elements of vector or matrix A in ascending order. 

• If A is a vector, then sort(A) sorts the vector elements. 

• If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each column. 

sort(M) 

ans = 3×4 
    -9     0     6     3 

     1     4    10     6 

     2     4    12     7 

  

To sort the elements in each row, simply sort the transpose of a matrix: 

sort(M') 

ans = 4×3 
     2    -9     1 
     3     0     4 

     4     6     6 

    10     7    12 

https://localhost:31515/static/help/matlab/ref/sort.html?searchHighlight=sort&searchResultIndex=1#bt8nojg-1-A
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To sort the elements in descending order, the command slightly changes to sort(A,'descend') 

sort(M,'descend') 

ans = 3×4 
     2     4    12     7 

     1     4    10     6 

    -9     0     6     3 

  

Finally, an interesting sorting command is sortrows. Unlike the sort command, this command sorts 

the entire row block based on the values of the first column. If there is a tie, it decides based on the 

values of the second column, and so. 

sortrows(M) 

ans = 3×4 
    -9     0     6     7 

     1     4    12     6 

     2     4    10     3 

  

Vector and Matrix Mathematical Operations 

The beauty of MATLAB is that it allows quick mathematical and logical operations on vectors and 

matrices.  

Again, suppose we have the previous two matrices and a third square matrix: 

 

K = [1, 4, 6, 3 ; -6, 0, 6, 7] 

K = 2×4 
     1     4     6     3 

    -6     0     6     7 

  

L = [2, 5, 17, 8; -1, 4, 4, 0] 

L = 2×4 
     2     5    17     8 

    -1     4     4     0 
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P = [5, 7; 8, 1] 

P = 2×2 
     5     7 

     8     1 

  

To add or subtract them together on an element-by-element basis, you simply write: 

K + L 

ans = 2×4 
     3     9    23    11 

    -7     4    10     7 

  

K - L 

ans = 2×4 
    -1    -1   -11    -5 
    -5    -4     2     7 

  

We know from mathematics that matrix multiplication is different than regular multiplication. You 

cannot multiply any two matrices together unless they satisfy a matrix dimension restriction: 

 

That is the number of columns of the first array equals the number of rows in the second array. For 

example, we cannot perform matrix multiplication on the arrays K and L above as MATLAB will give 

an error because the size of each is . 

K * L       % Error using * Incorrect dimensions for matrix 

multiplication. 

Yet, multiplying K by the transpose of L works fine because K has a size of , the transpose of L 

has the size of , and the result will have a size of . 

K * L' 

ans = 2×2 
   148    39 

   146    30 

  

Remember matrix multiplication is not commutative. . So, multiplying the transpose of L by 

K in this order will give a totally different result: 
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L' * K 

ans = 4×4 
     8     8     6    -1 

   -19    20    54    43 

    -7    68   126    79 

     8    32    48    24 

  

But what if you wish to do element-by-element multiplication, and not matrix multiplication. In this 

case, you must precede the * operator by a dot, so we have a new operator (.*) 

K .* L 

ans = 2×4 
     2    20   102    24 

     6     0    24     0 

  

To do element-by-element operations on matrices, you must precede any operator by a dot. For 

example, dividing each element by 8: 

K ./ 8 

ans = 2×4 
    0.1250    0.5000    0.7500    0.3750 

   -0.7500         0    0.7500    0.8750 

  

Or raising each element to a power of 2 or 4: 

K .^ 2 

ans = 2×4 
     1    16    36     9 
    36     0    36    49 

  

K .^ 4 

ans = 2×4 
           1         256        1296          81 

        1296           0        1296        2401 
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However, if you write: 

K ^ 2 

It will flag an error because this means you are multiplying and their dimensions do not agree. 

You can only do this with square matrices: 

P ^ 2 

ans = 2×2 
    81    42 

    48    57 

  

P ^ 4 

ans = 2×2 
        8577        5796 

        6624        5265 

  

What if the array elements are the powers that you wish to raise a scalar to, say we want to raise the 

number 4 to the power of elements in matrix . 

4 .^ K 

ans = 2×4 
    0.0004    0.0256    0.4096    0.0064 

    0.0000    0.0001    0.4096    1.6384 

  

You cannot raise a matrix to a matrix: 

K ^ P % Wrong 

What if you want to multiply the square root of each element in array  by the  of each 

corresponding element in array : 

sqrt(K) .* log10(L) 

ans = 2×4 
    0.3010    1.3979    3.0140    1.5642 

   -3.3420         0    1.4747      -Inf 

  

In linear algebra courses, you learnt of the inverse of a matrix. MATLAB has a special inverse 

function called inv. One can compute the inverse of a matrix only if it is square.  
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This would not work: 

inv(K) 

inv(L) 

But this does: 

inv(P) 

ans = 2×2 
   -0.0196    0.1373 

    0.1569   -0.0980 

  

A very useful command is the sum command. It sums all the values in a vector, or if the input is a 

matrix, it sums all the values in each column. 

sum([7 8 9 5 0]) 

ans = 29 

sum(K) 

ans = 1×4 
    -5     4    12    10 

  

Another useful command is the prod command. It multiplies all the values in a vector, or if the input 

is a matrix, it multiplies all the values in each column. 

prod([7 8 9 5 1]) 

ans = 2520 

prod(K) 

ans = 1×4 
    -6     0    36    21 
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Vector and Matrix Logical Operations 

Like all other programming languages, MATLAB supports logical and relational operators. We list 

them in the following table. 

 

When you use these operations, the output is either 0 (false) or 1 (true). These are not numeric  or 

, but logical values. In the same way, if we compare matrices using relational operators, the output 

matrix of s and s is not numeric, but logical. 

These operators work on an element-by-element basis. 

Again, suppose we have: 

 

K = [1, 4, 6, 3 ; -6, 0, 6, 7] 

K = 2×4 
     1     4     6     3 

    -6     0     6     7 

  

L = [2, 5, 17, 8; -1, 4, 4, 0] 

L = 2×4 
     2     5    17     8 

    -1     4     4     0 
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One can check if each element in K is less than each corresponding element in L by writing: 

R = K < L 

R = 2×4 logical array 

   1   1   1   1 

   1   1   0   0 

  

Check for the type (class) of the resulting matrix by typing: 

whos R 

  Name      Size            Bytes  Class      Attributes 

 

  R         2x4                 8  logical               

You can extract the numbers that meet a specific criterion using relational operators easily. For 

example, to store the numbers that are less than  in array  in a new matrix, simply write: 

Q = K(K < 5) 

Q = 5×1 
     1 

    -6 

     4 
     0 

     3 

  

The step K < 5 first compares each element in K if it is less than five or not and it returns a logical 

array of 0’s and 1’s. This array is passed to K () which retrieves the corresponding elements for each 

one that appears in the logical array. 

If you want to retrieve the linear index of the elements that are less than  in array , use the find 

function: 

find(K < 5) 

ans = 5×1 
     1 
     2 

     3 

     4 

     7 

 

 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 26 of 31 
 
 

The step K < 5 first compares each element in K if it is less than five or not and it returns a logical 

array of 0’s and 1’s. This array is passed to the find function which retrieves the linear index  for 

each one that appears in the logical array. 

 

Multidimensional Matrices 

3D matrices consist of pages of 2D matrices. Suppose one has: 

 

and that we wish to store them as a 3D matrix of three pages as follows: 

 

One can construct a 3D matrix by first storing the 2D matrices, then appending them: 

A = [5, 7; 8, 1] 

A = 2×2 
     5     7 

     8     1 

  

B = [1, 4; 7, 1] 

B = 2×2 
     1     4 

     7     1 

  

C = [0, 9; 4, 3] 

C = 2×2 
     0     9 

     4     3 

  

A (:, :, 2) = B 
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A =  

A(:,:,1) = 

 

     5     7 

     8     1 

 

 

A(:,:,2) = 

 

     1     4 

     7     1 

  

The previous commands append the second array B to the first array A creating a 3D array. 

A (:, :, 3) = C 

A =  

A(:,:,1) = 

 

     5     7 

     8     1 

 

 

A(:,:,2) = 

 

     1     4 

     7     1 

 

 

A(:,:,3) = 

 

     0     9 

     4     3 

  
The previous commands append the second array C to the 2D array of A and B expanding the 3D 

array. 

Addressing 3D matrices is simple. As before, using subscript addressing, define the row and 

column location in this respective order, then finally specify the page. 

For example, to retrieve the number  on the third page: 

A(1,2,3) 

ans = 9 

To get the whole second page: 

A(:, :, 2) 

ans = 2×2 
     1     4 

     7     1 
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Data Import and Pre-processing 

MATLAB has extremely powerful tools to import and export data whether it is text, spreadsheets, 

audio, video, images, or data stored in special scientific formats. In this experiment, we will focus on 

local MATLAB files (.mat), text files (.txt, .csv), and spreadsheets (.xls, .xlsx). 

Loading and Storing MATLAB Variables 

You can save all your workspace variables that you have created in a MATLAB session into a 

special file with the extension .mat. You can load these variables again at the start of your next 

session and start from where you last stopped. This is done through the simple save and load 

commands. You must specify a file name (as a string or character array), and optionally followed by 

the names of the variables you want to save/load. If you do not specify any variables, the commands 

will save or load ALL variables. 

save("exp3_all_variables.mat") 

save('exp3_some_variables.mat', "s1", "s2", "s3") 

But where are your variables stored? The variables are stored in the current working path. You can 

see the working path right under the ribbon (and you can change it from there too). Alternatively, you 

can write the "print working directory" command: 

pwd 

ans = 'D:\Google Drive\UJ-Courses\CPE213-Numerical_Analysis\Experiments' 

To load your MATLAB work session variables, use the load command which has an identical 

syntax.  

load("exp3_all_variables.mat") 

load('exp3_some_variables.mat', "s1", "s2", "s3") 

Using the Interactive Import Tool 

Many times, numeric data is stored in textfiles or Excel spreadsheets. You can use MATLAB 

commands that we introduced in the previous section. However, if you are working with one or two 

files, then you can use MATLAB's Import Data tool to import data into MATLAB's workspace using 

a GUI tool.  

1. You can access the tool from the Home ribbon, then Import tool. 

2. A simple Open File window will pop out, choose the file you want to import (.txt, .csv. 

.xlsx, ... etc). There are different options for Spreadsheets and Text Files 

3. A new Import screen opens where you select the import settings. Basically, the settings are 

identical, except for text files, you get the extra option to choose the delimiter that splits the 

data into columns. 
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Importing Spreadsheets using the GUI tool 

1. By default, it selects the entire range of the spreadsheets' cells. You can change the range to 

import a subset of this range. 

2. Specify the row number that holds the text data (e.g., Column headings). This helps 

MATLAB exclude it if you are importing it into a numeric array. 

3. Always make sure to import your data into a Numeric matrix, or a String Array if you want 

to import the data as text.  

4. Choose the import behaviour if your input data has problems, say if it has empty cells, or 

characters instead of numbers. You can replace these values with NaN or write any other 

value you want, or you can exclude the rows or columns that has these erroneous cells. It all 

depends on your application and what you want to do. 

5. Once you are done, click Import Selection, you can either simply save the data or generate 

the commands that import the data.  

 

Importing Text Files using the GUI Tool 

1. By default, the tool will try to find the delimiter (space, tab, comma ... etc) that best separates 

the text file into columns. 

2. You can select the entire range of the data, or you can change the range to import a subset 

of this range. 

3. Specify the row number that holds the text data (e.g., Column headings). This helps 

MATLAB exclude it if you are importing it into a numeric array. 

4. Always make sure to import your data into a Numeric matrix, or a String Array if you want 

to import the data as text.  
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5. Choose the import behaviour if your input data has problems, say if it has empty cells, or 

characters instead of numbers. You can replace these values with NaN or write any other 

value you want, or you can exclude the rows or columns that has these erroneous cells. It all 

depends on your application and what you want to do. 

6. Once you are done, click Import Selection, you can either simply save the data or generate 

the commands that import the data.  

 

It is worth noting that the GUI import tool can be used to import many other data formats such as 

audio and video files, different types of images and other datafiles. 
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Revision History 

 

 Ver. 1.2 

 Moved the Data Import and Pre-processing Part from the old Fundamentals III  

  into this experiment 

Ver. 1.1 

Corrected formatting and spelling mistakes. 

 Corrected the equation that computes the number of generated elements in a  

   vector by added the floor symbol. 

Added more info about the display format of the logspace command. 

Added more clarification on retrieving values or indices using logical  

   operations. 

Added more clarification to appending 2D arrays to form 3D arrays. 
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Scripts 

In the past few experiments, we have used MATLAB exclusively in interactive mode. You interacted 

with MATLAB by writing instructions inside the command window and seeing results in the same 

window. While interactive mode works well when one needs to perform quick calculations, for larger 

codes this might not be feasible. We resort to MATLAB scripts instead to write, store, debug, and 

execute longer codes with specific purposes much like any other programming language. Scripts 

save you time by allowing you to change a command, modify or fix your code in place rather than 

type everything every over and over in the command window. 

Script Creation and Access 

To create a MATLAB script file, simple go to New --> Script File and an untitled script will 

show up immediately in MATLAB workspace. When you save the script file, you must take 
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precautions in naming your script to avoid collisions. MATLAB scripts have an extension of 

'filename.m'. The rules for naming MATLAB script files are: 

• The name of a script file must begin with a letter, and may include digits and the underscore 

character, up to 31 characters. 

• Do not give a script file the same name as a variable, MATLAB command, or MATLAB 

function or other script files. 

Previously, we have used the exist command to check if a variable exists in the workspace or not. 

We can use the exist command again to check if the name we want to choose for our script is in 

no conflict with variables, other files, commands, etc. If you type exist with a potential script name, 

it must return zero before proceeding. A non-zero value means your suggested script name is 

already in use for something else as given in the list below: 

When you save the script, you can save it anywhere but when you run it, make sure that the script is 

in the current path. Remember you can use the function pwd to print the current path. You can save 

your scripts in other folders or subdirectories, but in this case, you must add these folders to the path 

using the command addpath. 

For example, to create a subdirectory in the current directory named 'myMATLAB' and add it to the 

path, one can write: 

mkdir('myMATLAB') 

If the directory already exists, it will give “Warning: Directory already exists.” 

addpath('myMATLAB') 

To check if your newly created folder (or any folder for that matter) is in MATLAB's path, simply 

check by using the command path: 

path 

  MATLABPATH 

 D:\Google Drive - drsuyyagh\UJ - Courses\CPE2xx - Numerical Analysis\Live Script 

Experiments\PNA - Instructor Live Scripts\myMATLAB 

 C:\Users\drsuyyagh\Documents\MATLAB 

 C:\Users\drsuyyagh\AppData\Local\Temp\Editor_vxdxq 

 C:\Program Files\MATLAB\R2020a\toolbox\matlab\capabilities 

 C:\Program Files\MATLAB\R2020a\toolbox\matlab\datafun 
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 C:\Program Files\MATLAB\R2020a\toolbox\matlab\datatypes 

 C:\Program Files\MATLAB\R2020a\toolbox\matlab\elfun 

 …, etc. 

Now let us create a script named 'firstScript.m' and save it inside 'myMATLAB' folder. Inside 

the file, write the command: 

disp('This is my first script') 

This is my first script 

To run the script, simply call it by its name. The content of the script will execute as long as you have 

added its location to MATLAB's path. 

firstScript 

Writing Scripts 

Inside your script, write your sequence of commands as if you are writing them using the interactive 

mode inside the command window. However, we usually prefer to do the following: 

• use the semicolon (;) to suppress the output of commands. We are usually interested in the 

final result, not the output of the intermediate steps. 

• Use the % to insert comments to explain the inputs, outputs, functionality, etc. 

Sometimes, you need to ask the user for input; you can use the input command to prompt users for 

input through the command window, and specify whether the required input is to be stored as a 

numeric value or a string. Don't forget to suppress the statements by a semicolon at the end.  

x = input ('Please Enter your Name: ', 's') % Add 's' at the end of the input 

command to specify a string input 

x = 'Ashraf' 

y = input ('Please Enter your Age: ')  % By default, inputs accepts numerical 

values 

y = 35 

To display text messages, or the value of variables to the user on the command window, as usual, 

use the disp command: 

disp('We are becoming good users of MATLAB!') 

We are becoming good users of MATLAB! 

Let us update our firstScript.m file that we have created inside the myMATLAB folder by doing 

something fun!  
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Suppose we want to plot the following equations on the Cartesian Coordinate system. Initially, we 

want to generate the (x,y) pairs using this equation in order to plot it, how would we approach this 

problem? 

 

 

1. In this example. we need to generate the values of x, and the associated  values of y. Both x 

and y equations are given in terms of t. If you use one value for t, this means you will only 

get one value for x, and another one for y, so you end up with only one pair of (x,y), which 

is basically a dot! 

2. We conclude that we need to generate numerous pairs of (x,y) such that we end up with a 

meaningful plot. To do so, we need to generate numerous values of t to substitute in the 

equations above. 

3. We already learnt that we can generate a vector of values either using the colon expression 

or the linspace command. But we need to know where to stop? In our case, we don't really 

know how many pairs are enough, so lets ask the user to provide the end point. 

4. The following sequence of MATLAB commands corresponds to the steps mentioned above. 

Copy/Paste this sequence into firstScript.m file after deleting its old content.  

endpoint = input('Please provide a value of t: '); 

t = 0:0.01:endpoint; 

x = sin(t).*(exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).^5); 

y = cos(t).*(exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).^5); 

plot(x, y) 

Notice that we have suppressed the output of each step and only visualized the plot. To execute the 

script, simply write its name. As long as the script location can be found in MATLAB's path, MATLAB 

will find it and run it. Run the script a couple of times times. Try the value 100 and 10 for t. 

firstScript 
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Functions and Subfunctions 

In MATLAB, aside from the ability to write scripts, you can write another type of files called function 

files. A function file is a special type of an .m file that contains one primary function and the 

possibility of having one or more subfunctions. Subfunctions are optional. You can use them if you 

have a very large primary function that you wish to divide into smaller modular functions. These are 

some important rules when writing function files: 

1. The primary function is always the first function in your file. 

2. Your filename and primary function name must be identical. 

3. Valid function names begin with an alphabetic character, and can contain letters, numbers, 

or underscores. 
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4. You can call the function from the command window or any other .m file, as long as the file 

is in MATLAB's path. Use addpath to add the folder containing the function file to MATLAB's 

path. 

5. You can only call the primary function. You cannot call any of the subfunctions. They are not 

visible outside of the file. Only the main function can access them.   

6. Any function can have zero or more inputs, and zero or more outputs. 

7. All variables defined in the primary function or the subfunctions are local to that function. 

You cannot access them from outside and they get erased once the function finishes 

execution; unless it is the output variable! 

8. In MATLAB 2016b or later, you can place functions at the end of a script file, but in this 

course, we will not cover this.  

Defining MATLAB Functions 

A MATLAB function has the following definition: 

function [y1,...,yN] = myfun(x1,...,xM) 

.. 

.. 

end 

"It declares a function named myfun that accepts inputs x1,...,xM and returns outputs y1,...,yN. 

This declaration statement must be the first executable line of the function". You must name the file 

as myfun.m 

Note that the output variables are enclosed in square brackets. The input variables must be 

enclosed with parentheses.   

The following are valid function definitions: 

 

Creating MATLAB Functions 

To create a MATLAB function, simply go to New --> Function and it will create a template that you 

can edit according to your requirements. The template will look like this: 

function [outputArg1,outputArg2] = untitled3(inputArg1,inputArg2) 

%UNTITLED3 Summary of this function goes here 

%   Detailed explanation goes here 

outputArg1 = inputArg1; 

outputArg2 = inputArg2; 

end 
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Start by first changing the function name from untitled to a meaningful name to call your function 

by. Don't forget to save your filename exactly as the function name. This first function is your primary 

function. Don't forget to add the folder this file exists in to MATLAB' path by using the command 

addpath. 

Now, edit your input and output arguments and the body of your function as you need. For example, 

create a function called zedSquares that takes in the arguments x and y , and returns the sum of 

their squares in z. Always try to write meaningful comments detailing  what the expected input is, 

and what does the function do and its output. Your function should look like this: 

function [z] = zedSquares(x, y) 

% zedSquares: This function comptes the sum of the sqaure of inputs x 

and y and stores them in z. 

z = x^2 + y^2; 

end 

Try calling your function as follows: 

m = 7; 

n = 9; 

n = 9 

z = zedSquares(m, n) 

z = 130 

What if the inputs to the function zedSquares were vectors or matrices? Our expectation is that it 

should perform the operation element-wise. But the function call will fail. Try it. 

m = [7, 5, 9, 0, 1]; 

n = [2, 2, 3 8, 6 ]; 

z = zedSquares(m, n) 

The reason behind this is we did not write our function body to be generic; that is, to take in the 

possibility that the user might enter a scalar, a vector, or a matrix. A simple fix would be to use 

element-wise operators. Update and save the function zedSquares with the following body: 

z = x.^2 + y.^2; 

then run the code below again: 

m = [7, 5, 9, 0, 1]; 

n = [2, 2, 3 8, 6 ]; 

z = zedSquares(m, n) 

z = 1×5 

    53    29    90    64    37 
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Creating MATLAB Subfunctions 

MATLAB subfunctions are functions that are written after the primary function. They can't be called 

outside the file, and only called by the primary function or each other.  

Let us create a new function file and call it circleParameters.m inside the folder myMATLAB. 

Copy the following code inside the newly created file: 

% The primary function in the file circleParameters.m 

function [area,circumference] = circleParameters(radius) 

    area          = computeArea(radius) ; 

    circumference = computeCircumference(radius) ; 

 

% A subfunction to compute the area 

function a = computeArea(r) 

a = pi.*r.^2; 

 

% A subfunction to compute the circumference 

function c = computeCircumference(r) 

c = 2*pi.*r;   

In the above code, the primary function takes the radius as an input, then calls the subfunctions 

computeArea and computeCircumference. Each one of them computes its respective values 

which are stored eventually into area and circumference; the final outputs of the primary functions. 

Note that when you call the primary function circleParameters, don't forget to store its output or 

otherwise you won't make good use of it in future operations. 

radii = [4, 5, 9]; 

[areas, circumferences] = circleParameters(radii) 

areas = 1×3 

   50.2655   78.5398  254.4690 

circumferences = 1×3 

   25.1327   31.4159   56.5487 

Global Variables 

"Ordinarily, each MATLAB function has its own local variables, which are separate from those of 

other functions and from those of the base workspace. However, if several functions all declare a 

particular variable name as global, then they all share a single copy of that variable. Any change of 

value to that variable, in any function, is visible to all the functions that declare it as global." 

Let us create a new function file and call it testGlobals.m inside the folder myMATLAB. Copy the 

following code inside the newly created file: 

function testGlobals (x, y) 

global z 

z = 10; 

disp(z) 

inner1 (y); 

disp(z) 

inner2 (x); 
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disp(z) 

end 

 

function inner1 (y) 

global z 

z = z - y; 

end 

 

function z = inner2 (x) 

z = 5 + x; 

end 

Once you are done, call the primary function testGlobals: 

testGlobals (2, 3) 

    10 

 

     7 

 

     7 

We observe that the variable z is a global variable in only the primary function and inner1 function, 

but NOT inner2 function where it is a local variable. So initially, z has a value of 10. When we call 

inner1, the value of z changes globally to become 7. However, when we call inner2, there z is a 

local variable, it becomes 4 and the function returns with the value 4, but since it is not stored 

anywhere, its value is lost. Global z value is not affected and remains 7. 

Persistent Variables 

"Persistent variables are local to the function in which they are declared, yet their values are 

retained in memory between calls to the function". That is, when the function finishes execution, it 

does not clear the variable. Further, you cannot change the value of the persistent variable from 

MATLAB's command line or from within other functions. By default, persistent variables are 

initialized to an empty vector. 

Let us create a new function file and call it testPersistent.m inside the folder myMATLAB. Copy 

the following code inside the newly created file: 

function testPersistent() 

persistent n 

    if isempty(n) 

        n = 0; 

        disp(n) 

    end 

    n = n+1; 

    disp(n) 

end 
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Once you are done, call the primary function testPersistent few times: 

testPersistent 

     0 

 

     1 

testPersistent 

     2 

testPersistent 

     3 

testPersistent 

     4 

Once declared, the persistent variable n is an empty vector. The if statement tests if n is empty and 

if so initializes it to 0, so it becomes a scalar with the value 0. Then, it gets incremented by 1 and the 

function exits. Upon the next call, the persistent variable n was not cleared, and it still retains its 

previous value of 1, so the function increments it to 2. In the third call, its value is updated to 3 and 

so on.  

Function Arguments Validation 

In many times, you want to make sure that your function accepts numeric values only (no strings, 

NaN, or Inf), or you want to make sure that it accepts vectors but not arrays, or accepts arrays of 

certain fixed dimensions, or that the values passed satisfy a certain criteria. You can make these 

validation checks at the beginning of your function using the arguments and end keywords. Function 

validation has the following syntax: 

 

After you define your function, and before its main body you can add the checks necessary using the 

arguments keyword. The function argument declaration can include any of these kinds of 

restrictions: 
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• Size: The length of each dimension, enclosed in parentheses. For example (1, 1) means it 

accepts scalars, (1, :) can accept either vertical or horizontal vectors, (3:0) means the first 

dimension must be 3, and second dimension can be any value. 

• Class: can be char, double, string, etc.  

• Validation Functions: A comma-separated list of validation functions, enclosed in curly 

braces. You can choose your functions from the list below: 

 

Let us write a function that has three arguments a, b and c. We wish to restrict a to be a positive 

scalar, b to be a vector with no NaN or Inf values, and c to be an array whose elements are larger 

than 10. All variables must be of course numeric. 

Let us create a new function file and call it testValidation.m inside the folder myMATLAB. Copy 

the following code inside the newly created file: 

function testValidation (a, b, c) 

    arguments 

        a (1, 1) double  {mustBeNumeric, mustBePositive } 

        b (1,:)  double  {mustBeNumeric, mustBeFinite} 

        c (:,:)  double  {mustBeNumeric, mustBeGreaterThan(c, 10)} 

    end 

 

    disp(a) 

    disp(b) 

    disp(c) 

end 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 12 of 20 
 

To test how functions with arguments validation works, let us try few examples: 

a = 7; 

b = [12, 14, 17]; 

c = [12, 15,; 19, 11]; 

testValidation (a, b, c) 

     7 

 

    12    14    17 

 

    12    15 

    19    11 

Suppose we change the value of a to -7: 

a = -7; 

b = [12, 14, 17]; 

c = [12, 15,; 19, 11]; 

testValidation (a, b, c) 

You will get an error telling you the restriction that you have imposed: 

Error using testValidation 

Invalid argument at position 1. Value must be positive. 

Similarly, if we change the value of b to have an Inf: 

a = 7; 

b = [12, 14, Inf]; 

c = [12, 15,; 19, 11]; 

testValidation (a, b, c) 

You will get an error telling you the restriction that you have imposed: 

Error using testValidation 

Invalid argument at position 2. Value must be finite. 

And finally, if we change the value of 11 into 9 in variable c: 

a = 7; 

b = [12, 14, 17]; 

c = [12, 15,; 19, 9]; 

testValidation (a, b, c) 

You will get an error telling you the restriction that you have imposed: 

Error using testValidation 

Invalid argument at position 3. Value must be greater than 10. 
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Function Handles and Anonymous Functions 

Function handles are created by simply preceding the function name by the @ sign. So, the handle 

becomes like a pointer to that function which allows you to pass the function as an argument to other 

functions or create what we call a cell array of function handles.  

A cell array is special type of MATLAB arrays that can be used to store elements of different types 

together, unlike numeric or string arrays, they can contain numbers, strings, or function handles, etc. 

We can create a cell array of trigonometric function handles as follows: 

trigfun = {@sin, @cos, @tan} 

trigfun = 1×3 cell  

  1 2 3 

1 1×1 function_handle 1×1 function_handle 1×1 function_handle 

 

Note that we use curly brackets instead of square brackets to both create and call cell array 

elements. 

We can use function handles to create anonymous functions according to this syntax: 

functionName = @(input_arguments) body 

To illustrate: 

sqr = @(x) x.^2; 

In this example, sqr is the function name, @ is the function handle which specifies that it accepts one 

input x, followed by the body of the anonymous function. 

To try it out: 

x = 1:10; 

sqr(x) 

ans = 1×10 

     1     4     9    16    25    36    49    64    81   100 

You can create anonymous functions with more than one variable: 

myfunction = @(x,y) (x.^2 + y.^2 + x.*y); 

x = 1:10; 

y = 2:2:20; 

myfunction(x,y) 

ans = 1×10 

     7    28    63   112   175   252   343   448   567   700 
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Control Flow 

In this section, we assume that you are familiar with all the control structures from previous 

programming courses. So, we will simply introduce their syntax and any worthy notes. 

Conditionals 

The syntax for the if, elseif, and else statements looks like this: 

 

where the elseif, and else parts are optional and depend on your application. The expression of 

the if statement can be written with or without parenthesis. But we advise that once you start using 

compound logical expressions using the (&&, ||, !) that you enclose the expressions in 

parenthesis to improve readability and avoid logical errors. Review the following examples below. 

We advise you to refer to Experiment 02 - MATLAB Fundamentals II - Vector and Matrix Logical 

Operations Section to review the logical operators available for use in MATLAB. 

% Example: One-Way If Statement 

x = 10; 

if x ~= 0 

    disp('Nonzero value') 

end 

Nonzero value 

% Example: Two-Way If Statement 

x = -9; 

if x > 0 

    disp('Positive value') 

else 

    disp('Non-Positive Value') 

end 

Non-Positive Value 
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% Example: Nested If Statements 

x = -10; 

if x > 0 

    disp('Positive value') 

elseif x < 0 

    disp('Negative Value') 

elseif x ==0 

    disp('Zero Value') 

else  

    disp('Fail') 

end 

Negative Value 

% Example: Two-Way If Statement with Compound Expressions 

x = -10; 

if (x > 0) || (x < 0) 

    disp('Non-Zero value') 

else 

    disp('Zero Value') 

end 

Non-Zero value 

But, what if the input to the if statement was a vector or array instead of a scalar? Suppose we 

have this case: 

x = [5, 0 , -5]; 

if x > 0 

    disp('Positive value') 

elseif x < 0 

    disp('Negative Value') 

elseif x == 0 

    disp('Zero Value') 

else 

    disp('Fail') 

end 

Fail 

The above code will not go through the elements of x element-by-element. It will treat the vector or 

array as one unit. Either all of its elements satisfy one of the conditions or not. Here, each element 

in x satisfies a different case, so the vector as one unit won't match any case except the 'Fail'. In 

contrast, in the code below, all the elements in x are positive, so the vector x as one unit is positive 

and thus it matches the first case. 
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x = [8, 24 , 55]; 

if x > 0 

    disp('Positive value') 

elseif x < 0 

    disp('Negative Value') 

elseif x == 0 

    disp('Zero Value') 

else 

    disp('Fail') 

end 

Positive value 

Switch Statement 

The switch statement is similar to the one you have been introduced to before in C++ or Java. It has 

the following syntax: 

  

The major difference is that in MATLAB, you do NOT need a break statement between each case 

statement. Each sentence will end once the next case or otherwise statement begins. If no value 

matches any of the cases, then MATLAB will run the body of the otherwise statement. We will try 

the example below with the input -1 

n = input('Enter one of the following numbers [-1, 0, 1]: '); 

switch n 

    case -1 

        disp('negative one') 

    case 0 

        disp('zero') 

    case 1 

        disp('positive one') 

    otherwise 

        disp('other value') 

end 

negative one 
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You can also compare characters or strings inside a MATLAB switch statement. We will try the 

example below with the input g: 

Gender = input('Enter the gender of the newborn baby [b/g]: ', 's'); 

switch Gender 

    case 'b' 

        disp('Congratulations! It is a baby boy!') 

    case 'g' 

        disp('Congratulations! It is a baby girl!') 

    otherwise 

        disp('Alien baby?') 

end 

Congratulations! It is a baby girl! 

Loops 

The for loop is quite simple in MATLAB. It has the following syntax: 

 

for v = 1.0:-0.2:0.0 

   disp(v) 

end 

     1 

 

    0.8000 

 

    0.6000 

 

    0.4000 

 

    0.2000 

 

     0 

 

 

 

 

 

 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 18 of 20 
 

for v = [1 5 8 17] 

   disp(v) 

end 

     1 

 

     5 

 

     8 

 

    17 

The while loop on the other hand keeps executing until the condition it is checking against becomes 

false. You must make sure the variable is updated inside the while loop so that you will not end with 

an infinite loop. The while loop has the following syntax: 

 

For example, this is a while loop that computes the factorial of number n similar to the function 

factorial. We will try the example below with the input 5. 

n = input('Enter a value for n less than 10: '); 

f = n; 

while n > 1 

    n = n-1; 

    f = f*n; 

end 

disp(['n! = ' num2str(f)]) 

n! = 120 

Remember that you can use the break keyword to exit the while or for loops at any time. Also, you 

can use the continue keyword, to only skip the current iteration and start the next one without fully 

exiting the loop. 

Loop Vectorization 

We often forget that MATLAB has been designed from the ground up to work easily with vectors or 

matrices. Anyone coming from C++ or Java programming background might use old techniques in 

problems MATLAB can handle quickly using its syntax and features.  



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 19 of 20 
 

Suppose you want to compute the sin of 1001 values ranging from 0 to 10 radian. You might 

naturally go with your first intuition and write the code as follows: 

% Not Recommended 

i = 0; 

y = zeros (1,1001); 

for t = 0:0.01:10 

    i = i +1; 

    y(i) = sin(t); 

end 

Whereas you forgot that MATLAB can readily do the same operation as: 

% Recommended 

t = 0:0.01:10; 

y = sin(t); 

The beauty of MATLAB is that it can work on entire vectors or arrays without having to loop over 

their elements one-by-one. The second code is much faster to run and is the only way we  accept in 

this course. Vectorize whenever possible. Another example is if you have the following array and 

you want to find all the elements larger than or equal to zero.  

A = [ 0, -1,  4; ... 

    -14, 25,  9;... 

    -34, 49, 64]; 

The wrong way to do it in MATLAB is: 

% Not Recommended 

[m, n] = size(A); 

C = zeros([m,n]); 

for K =  1:m*n 

    if A(K) >=0 

        C(K) = A(K);     

    end 

end 

disp(C) 

     0     0     4 

     0    25     9 

     0    49    64 

Whereas you could have easily done the same thing by: 
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C = A; 

C(C < 0) = 0 

C = 3×3 

     0     0     4 

     0    25     9 

   0    49    64 
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Quick Review on Plotting Tiled Layouts 

 

Suppose we want to plot the following signals in a tiled layout as shown in the figure below: 

 

Step 1: Identify the smallest plot tile. In this case either one of the first two plots is the smallest.  

 

 

  

 



Step 2: Use the smallest tile as a scale to measure the other tiles: 

 

Step 3: Number the tiles from left to right, then from up to down 

 

 

 

  

 

 

 

1 2 3 

4 5 6 



Step 4: Use this numbering to identify the start of each plot, and the area it takes to fill this 

space in the tiled layout 

 

nexttile (1) 

                    nexttile (2) 

                                nexttile(3, [2 1])  % Starts at 3, and takes a space of two rows, one column 

 

nexttile  (4, [1 2]) % Starts at 4, and takes a space of one row, two columns 

Example Code: 

x = 1:0.1:10; 

y1 = sin(x); 

y2 = exp(x); 

y3 = log(x); 

y4 = sin(x)+cos(x); 

 

t = tiledlayout (2, 3); 

 

nexttile (1) 

plot(x, y1) 

 

nexttile (2) 

plot(x, y2) 

 

nexttile(3, [2 1]) 

plot(x, y3) 

 

nexttile(4, [1, 2]) 

plot(x, y4) 

1 2 3 

4 5 6 
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Introduction 

Data visualization is important to analyse, understand, and make informed guesses or deductions 

about the underlying data. In the ribbon bar, and under the 'Plots' tab, MATLAB offers a large set of 

plot types. While it is easy to use these GUI plots readily, especially for one-time plots, they can be 

cumbersome to use for a large number of plots. If you want to use the GUI tool, you simply select 

the variables you want to plot from the Workspace window, then you click on the plot type applicable 

to this type of data. You can customize the graph afterwards. But if you want to repeat these steps 

for a larger number of files, the procedure will be repetitive and time-consuming. In this lab, we will 

learn how to write MATLAB commands that draw plots with different options and save them in any 

compatible output format. We can use the codes afterwards for any input data we want and provide 

customization options far more powerful than what you can do with the GUI plots (e.g. plot animation 

or stacked or tiled plots). 
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Simple Vector Plots on the Cartesian Axes 

Often, we need to plot functions in relation to time ,  or mathematical functions such as 

. In this type of graphs, it is only logical to have equal-size vectors associating the two variables 

together. To plot a simple sine wave from  to , we can do the following: 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

 

You will notice that a figure with the title Figure 1 appears on the screen and the plot drawn on an 

axes inside. Now suppose you want to add another cosine wave to the same figure, if you try: 

x2 = linspace(-2*pi,2*pi); 

y2 = cos(x2); 

plot(x2, y2); 
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You will notice that the new figure will overwrite the previous figure! In order to keep the previous 

sine wave and add the cosine wave to it (superimpose the new plot over the old plot). You can 

expand the plot command such that it plots both the sine wave and the cosine wave in the same 

plot: 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

y2 = cos(x1); 

plot(x1, y1, x2, y2);  % Notice we provided the two graphs together 

 

When you have lots of functions to plot on the same figure, the previous method can get a bit 

confusing (too long) or not visually appealing. Instead, we use the hold command which instructs 

MATLAB to hold (keep) the previous figure while we plot another on the same canvas. You can turn 

the hold on and off as suits your needs. 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

hold on 

y2 = cos(x1); 

plot(x1, y2); 

hold off 
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Similarly, we can use the grid command to enable or disable drawing a grid in our figure. Grids can 

be useful to read the figure easily. However, you enable or disable the grid after you plot your 

functions.  

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

hold on 

y2 = cos(x1); 

plot(x1, y2); 

hold off 

grid on 
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But what if you want to plot the two trigonometric functions on two separate figures instead of one 

overwriting one another, or having them on the same canvas? In this case, use the figure command 

to start a new canvas: 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

figure 

y2 = cos(x1); 

plot(x1, y2); 

grid on 

In the above example, note that the grid was only shown for the second figure but not the first! It is 

important to note that all plot commands affect the most recent figure drawn, so to show the grid for 

each figure, you must do the following: 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

grid on 

 

figure 

y2 = cos(x1); 

plot(x1, y2); 

grid on 
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It will be extremely advantageous to be able to return to a certain figure and do some modifications. 

Since all edits by default are applicable to the most recent figure drawn, we can overcome this 

limitation by storing each plot canvas (figure) and its plot axes in two objects so that we can refer to 

them later and modify their properties by name pairs, if needed: 

 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

h1 = figure; 

p1 = plot(x1, y1);   % Save first plot in object h1 

grid on 

figure 

y2 = cos(x1);        % Save second plot in object h2 

h2 = figure; 

p2 = plot(x1, y2); 

grid on 

Plotting a Matrix against a Vector using different Plot Commands 

In the examples above, we have plotted a vector against another vector of equal size. MATLAB 

allows plotting a vector against a matrix, or a matrix against another matrix. Plotting a vector against 

a vector is simply a special case of plotting matrices against each other. As an example, suppose we 

have collected the average annual precipitation from four world cities in a matrix, and we want to plot 

the amount of rainfall (in mm) against each month. Matrix rainfall has the precipitation values for 

Amman, Montreal, London, and Cairo (Source: Wikipedia): 
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One condition when plotting matrices against vectors is that they must have one dimension of the 

same length. It is apparent that we need to plot against the months of the year, and we must have a 

value for each month.  Our table satisfies this condition. MATLAB plots columns of a matrix, not its 

rows, so we must transpose the matrix before plotting it. Either enter it as in Table 1 above then 

transpose it or write it in transpose form. 

months = 1:12; 

rainfall = [60.6  77.2  55.2  5; ... 

            62.8  62.7  40.9  3.8; ... 

            34.1  9.1      41.6  3.8; ... 

            7.1      2.2      43.7  1.1; ... 

            3.2      1.2      49.4  0.5; ... 

            0      87      45.1  0.1; ... 

            0      89.3  44.5  0; ... 

            0      4.1      49.5  0; ... 

            0.1      83.1  49.1  0; ... 

            7.1     91.3  68.5  0.7; ... 

            23.7  96.4  59      3.8; ... 

            46.3  38.8  55.2  5.9]; 

plot(months, rainfall) 

grid on 
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However; one can note that we are trying to plot discrete time data using a continuous plot. This 

might lead to false deductions; that the rainfall linearly increases or decreases between each month! 

Perhaps it is better to convey this data using a better graph, for example, lets try the stairs plot: 

stairs(months, rainfall) 

grid on 

 

In our case, the stairs plot is definitely an improvement over the continuous plot function, but 

what if we try the stem plot? 
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stem(months, rainfall) 

grid on 

 

It seems like the stem plot is indeed a better visual plot for our type of discrete data points. 

But, can we for example plot the datapoints only? without any lines connecting them? For this type 

of graph, we can use the scatter plot. Unfortunately, the scatter plot cannot handle matrices, so 

we need to divide the matrix into columns, and use the loop to go over and plot the matrix column-

by-column while also having the hold command enabled to keep drawing on the same figure 

canvas: 

[m, n] = size(rainfall); 

for i = 1:n 

    scatter(months', rainfall(:, i)) 

    hold on 

end 

grid on 

hold off 
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We can also draw the data as bars using the bar command: 

bar(months, rainfall) 

grid on 
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Plotting a Matrix against another Matrix 

Suppose we have the three functions: 

,  

, and  

 

and you want to plot the three functions, with the same number of points of  (say 100) but you 

evaluate  at different points. We can group the  samples in a matrix of size 3x100, and evaluate 

the functions in another matrix, then plot the matrices against each other. But remember when 

plotting matrices, MATLAB plots a column against a column, so we should make sure we prepare 

our data in this way to make sure we draw the desired plot: 

t1 = linspace(0, 2*pi, 100)'; 

t2 = linspace(-pi, pi, 100)'; 

t3 = linspace(-2*pi, 2*pi, 100)'; 

t = [t1, t2, t3]; 

trigo = [sin(5*t1), ... 

         sin(3*t2) + cos(7*t2), ... 

         2*sin(0.5*t3)]; 

plot(t, trigo) 

grid on 
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Plotting Different Data Against a Common Axis 

Table 2 has more detailed meteorological data on the city of Amman. It has information about the 

average high and average low temperatures, as well as the average monthly sunshine hours, and 

the number of rainy days in each month. This table has one common base for all different data: the 

months. Yet, some data are temperatures in Celsius, others are in hours, while the last data is 

number of days. One way to plot such data is as follows: 

 

Initially, we store this table inside the matrix ammanMeteo: 

months = [1:12]'; 

ammanMeteo = [  2.7 4.2      11      79.8;  ... 

                13.9 4.8      10.9  182;   ... 

                17.6 7.2      8      226.3; ... 

                23.3 10.9  4      266.6; ... 

                27.9 14.8  1.6      328.6; ... 

                30.9 18.3  0.1      369;   ... 

                32.5 20.5  0      387.5; ... 

                32.7 20.4  0      365.8; ... 

                30.8 18.3  0.1      312;   ... 

                26.8 15.1  2.3      275.9; ... 

                20.1 9.8      5.3      225;   ... 

                14.6 5.8      8.4      179.8]; 

             

Then, we use a special type of plot command called stackedplot: 

  h3 = figure; 

  p3 = stackedplot(months, ammanMeteo)   

As you can see, all four variables have been stacked on top of each other. Each has its own y-axis, 

and they share a common months axis. But the issue now, is that all our plots so far need 

annotation. That is to specify plot titles, axis names, legends and so on. We will see how to do this 

later. 

By default, the stacked plots are continuous, so what if we want to change some or all of the plot 

types to scatter or stairs (Only these two types are supported in stackedplots)? In this case, after you 

create the stackedplot. you can edit the type as needed: 
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  p3.LineProperties(1).PlotType = 'scatter'; 

  p3.LineProperties(2).PlotType = 'scatter'; 

  p3.LineProperties(3).PlotType = 'stairs'; 

  p3.LineProperties(4).PlotType = 'stairs'; 

 

Tricky Function Plots 

When we plot functions such as  or , our approach is to create a vector of inputs  or  then 

substitute them into the associated function. We are creating discrete points that MATLAB plots. Do 

not be misled to believe that what you see is an actual continuous function. MATLAB has connected 

the discrete data points (samples) and gave you the illusion that the function is continuous .  

In fact, MATLAB is good at approximating the function shape depending on how many sample data 

points you provide it with. Few samples might not capture the actual shape and characteristics of the 

underlying function, while too much data points are unnecessary, time-consuming and slow your 

code. In the code below, we will attempt to draw the sine function in four separate figures over the 

entire range of  to using different vector sizes: 

t = linspace(-2*pi, 2*pi, 4); 

y = sin(t); 

plot(t,y) 
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figure 

t = linspace(-2*pi, 2*pi, 10); 

y = sin(t); 

plot(t,y) 

 

figure 

t = linspace(-2*pi, 2*pi, 100); 

y = sin(t); 

plot(t,y) 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 15 of 40 
 

 

figure 

t = linspace(-2*pi, 2*pi, 1000); 

y = sin(t); 

plot(t,y) 

 

Notice how smaller vectors yielded different shapes that the expected sine function. As we increased 

the number of sample points, the shape did indeed turn into a sine. There is no observable 

difference between using 100 or 1000 samples.  
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In the previous case, we could easily determine that 100 was enough because we know what to 

expect when drawing a sine wave. But what if we are working with a new function whose shape we 

do not know, how can we guess that the number of samples we choose is indeed enough?  

Suppose we want to plot the function  over the range of 1 to 2. 

Normally, we would create a large vector of  then substitute it in the function equation: 

x = linspace(1, 2, 200); 

y = cos(tan(x)) - tan(sin(x)); 

plot(x, y) 

 

figure 

x = linspace(1, 2, 2000); 

y = cos(tan(x)) - tan(sin(x)); 

plot(x, y) 
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As you can see, plotting over large samples 200 and 2000 gave different plot shapes? Do we even 

know if 2000 are enough now? 

MATLAB has a smart function plot command called fplot which takes as input the function as an 

anonymous function, and the range we want to plot the function over. The fplot command internally 

determines the correct number of samples it needs and then plots the function accordingly. The 

default interval for the fplot command is from -5 to 5. To draw the previous function using flpot and 

over the range from 1 to 2, one can write:  

fplot(@(x) cos(tan(x)) - tan(sin(x)), [1 2]  ) 
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Figure Annotation and Options 

Professional plots need not only display accurate representation of the underlying data, but also 

make the reader understand what they represent. Plots must have titles, proper axes titles, and 

legends. Let’s start over with our first plot, and edit the code with proper annotation. In the first 

instance, we will assume that we did not save the plot in an object, so by default, all subsequent plot 

commands will default to the most recent plotting canvas. To add titles, names for any axis, or a 

legend, we use the title, xlabel, ylabel, and legend commands. We pass a string for each that 

would appear into its respective location. 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

title('Plot of a Sine Wave') 

xlabel('x') 

ylabel('sin(x)') 

legend('sin(x)') 

grid on 

 

You can also change the font size, type, and colour of the figure title or labels. You can do so by 

using name-pair arguments. That is, you specify what you want to change followed by its value. The 

available options are: 

• 'FontSize':    Default (11), you can set the size to 12, 14, etc. 

• 'FontWeight'   Default ('normal') can be either 'normal' or 'bold' 

• 'FontName'     Default ('FixedWidth') or the name of a font installed and supported by 

your OS 

• 'Color'        MATLAB assigns default colours, you can change them to any colour as 

specified in the customization section (later). 
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x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

title('Plot of a Sine Wave', 'FontSize', 16, 'FontWeight', 'bold', "FontName", 

'FixedWidth' ) 

xlabel('x', 'FontSize', 14, 'FontWeight', 'bold', "FontName", 'FixedWidth', 

'Color', 'red') 

ylabel('sin(x)', 'FontSize', 14, 'FontWeight', 'bold', "FontName", 

'FixedWidth','Color', 'red' ) 

legend('sin(x)') 

grid on 

 

You can also change the span of the x-axis and y-axis, this does not affect the range of the function, 

only the axis: 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

title('Plot of a Sine Wave') 

xlabel('x') 

ylabel('sin(x)') 

legend('sin(x)') 

axis ([-7 7 -2 2])  % Insert the range of the x-axis and y-axis in order 

grid on 
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If you want to specify a size and location for your figure on the screen, you need first to set the units 

('pixels' (default), '', 'centimeters', 'inches'), then you specify the following vector [left bottom 

width height] in the unit you have chosen. 

So, in the next example, we are specifying that the figure is to be 300 pixels away from the bottom 

left corner of the screen, and that it has a size of  pixels. 

figure("Units","pixels", "Position", [300 300 640 480]) 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

title('Plot of a Sine Wave') 

xlabel('x') 

ylabel('sin(x)') 

legend('sin(x)') 

axis ([-7 7 -2 2])  % Insert the range of the x-axis and y-axis in order 

grid on 
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If you need to overwrite the labels used on the x-axis or y-axis, you need to pass the new labels as a 

string and specify which axis you are changing (xticklabels). For example, we can replace the 

months name in the previous plot with their name: 

plot(months, rainfall) 

xticks([1:12]) 

xticklabels({'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 

'Oct', 'Nov', 'Dec'}) 

grid on 
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To annotate stacked plots like the one we created for Amman's metrological data, we need to 

specify multiple y-axis labels for each stacked plot. Create a string cell for each stacked plot in the 

order they appear inside the matrix, and pass it to the stackedplot command: 

figure("Units","pixels", "Position", [300 300 800 600]) 

newYlabels = {'Average High Temperature', 'Average Low Temperature', 

'Precipitation Days', 'Sunshine Hours'};    % Note we create a cell array by 

using curly brackets {} 

stackedplot(months, ammanMeteo, 'DisplayLabels',newYlabels) 

title('Amman Meteolorgical Data') 

xlabel('Months') 

 

Tiled Plots 

Sometimes we need to display four, six, or nine plots on the same figure. We can do this using tiled 

layout. Let us define and draw four sine waves at different frequencies and draw each in a different 

tile in a 4x4 grid: 

x = linspace(0,30); 

y1 = sin(x); 

y2 = sin(x/2); 

y3 = sin(x/3); 

y4 = sin(x/4); 

t = tiledlayout(2,2); 

So far, the figure is empty, to start adding plots, we need to use the nexttile command and any 

plot command of our choice. You can give titles to your tiles as you go: 
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% Tile 1 

nexttile 

plot(x,y1) 

title('F = 1') 

 

% Tile 2 

nexttile 

plot(x,y2) 

title('F =  1/2') 

 

% Tile 3 

nexttile 

plot(x,y3) 

title('F = 1/3') 

 

% Tile 4 

nexttile 

plot(x,y4) 

title('F =  1/4') 

You can change the spacing between the tiles by using one of these three options ('normal', 

'compact', 'none'): 

t.TileSpacing = 'compact'; 

or  

t.TileSpacing = 'none'; 

At the end, you can create a shared title and common axes using what we have already learnt: 

title(t,'Sine Wave Plots at Different Frequencies') 

xlabel(t,'Time (t)') 

ylabel(t,'sin(ft)') 
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We can make one tile span multiple tiles as follows: 

t2 = tiledlayout(2,2); 

 

% Tile 1 

nexttile 

plot(x,y1) 

title('F = 1') 

 

% Tile 2 

nexttile 

plot(x,y2) 

title('F =  1/2') 

 

% Tile 3 

nexttile([1 2])   % Here we are specifying that this tile will take the space 

of 1 row, 2 columns 

plot(x,y3) 

title('F = 1/3') 

 

t2.TileSpacing = 'none'; 
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Suppose you want to modify a certain tile after plotting it. For example, in the previous example, to 

plot  instead of , all you need to do is specify the tile number: 

nexttile(3) 

plot(x,y4) 

title('F = 1/4') 
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Plot Customization 

You can change the colour of your plot, the line shape, width, and even add markers at 

measurement (sample) points by using name-value pair arguments. Each of these pairs is optional. 

So you can use any combination of them, or none. You start by writing the option name you would 

like to change, then assign to it any of the applicable options. The main properties which you can 

change are: 

• 'Color': MATLAB can accept colors either as an RGB values triplet, or their equivalent 

color Hexadecimal code. 

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, 

green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 

0.6 0.7]. On the Internet, you will find RGB values from the range of 0 to 255. In order to use them in 

MATLAB, you need to divide them by 255. 

A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#) 

followed by three or six hexadecimal digits, which can range from 0 to FF each (e.g. '#FF8800'. 

It is basically writing the RGB codes in hexadecimal next to each other). 

You can use any of the many available websites to find beautiful colour palettes for your plots. 

These websites will provide you with the RGB and Hex codes: 

• https://htmlcolorcodes.com/ 

• https://www.color-hex.com/ 

• https://en.wikipedia.org/wiki/Web_colors 

For few select colours, MATLAB has assigned names that you can use instead of their RGB or 

hexadecimal notation. 

https://htmlcolorcodes.com/
https://www.color-hex.com/
https://en.wikipedia.org/wiki/Web_colors
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Let's try few of these colours: 

x = linspace(0,30); 

y1 = sin(x); 

y2 = 2*sin(x/2); 

y3 = sin(x/3); 

y4 = 0.25*sin(x/4); 

figure("Units","pixels", "Position", [300 300 600 480]) 

hold on 

plot(x,y1, "color", '#7E2F8E') 

plot(x,y2, "color", 'blue') 

plot(x,y3, "color", '#DC143C')  % Crimson 

plot(x,y4, "color", [0.1843, 0.3098, 0.3098])  % DarkSlateGray RGB = 47  79  79 
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• 'LineStyle' You can use it to change the shape of your line from solid lines to dashed or 

dotted. MATLAB has these options available: 

 

• 'LineWidth'  Default (0.5) You can change the thickness of your line using this option: 

Let us modify our code above to change the line type and widths: 

x = linspace(0,30); 

y1 = sin(x); 

y2 = 2*sin(x/2); 

y3 = sin(x/3); 

y4 = 0.25*sin(x/4); 

figure("Units","pixels", "Position", [300 300 600 480]) 

hold on 
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plot(x,y1,  'LineStyle', '-' , 'LineWidth', 0.75) 

plot(x,y2,  'LineStyle', '--', 'LineWidth', 1) 

plot(x,y3,  'LineStyle', ':' , 'LineWidth', 0.25)   

plot(x,y4,  'LineStyle', '-.')   

 

• 'Marker'  By default, MATLAB shows no markers on the line. However, if you need to, you 

can display markers on all or some of the samples in the plot. Markers come in different 

shapes. The options available in MATLAB are: 
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In this example, we have plotted the sine waves over 100 samples, so we would expect to see 100 

markers for each plot: 

x = linspace(0,30, 100); 

y1 = sin(x); 

y2 = 2*sin(x/2); 

y3 = sin(x/3); 

y4 = 0.25*sin(x/4); 

figure("Units","pixels", "Position", [300 300 600 480]) 

hold on 

plot(x,y1, 'Marker', 'x') 

plot(x,y2, 'Marker', '*') 

plot(x,y3, 'Marker', 'o')  

plot(x,y4, 'Marker', '+')   
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• 'MarkerIndices': You can use this to only print the markers on a subset of the samples. 

x = linspace(0,30); 

y1 = sin(x); 

y2 = 2*sin(x/2); 

y3 = sin(x/3); 

y4 = 0.25*sin(x/4); 

subsetIndices = [1:10:100]; 

figure("Units","pixels", "Position", [300 300 600 480]) 

hold on 

plot(x,y1, 'Marker', 'x', 'MarkerIndices', subsetIndices) 

plot(x,y2, 'Marker', '*', 'MarkerIndices', subsetIndices) 

plot(x,y3, 'Marker', 'o', 'MarkerIndices', subsetIndices) 

plot(x,y4, 'Marker', '+', 'MarkerIndices', subsetIndices)  
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• 'MarkerSize' by default, markers have a size of 6 points. Use this property to change its 

size. 

x = linspace(0,30); 

y1 = sin(x); 

y2 = 2*sin(x/2); 

y3 = sin(x/3); 

y4 = 0.25*sin(x/4); 

figure("Units","pixels", "Position", [300 300 600 480]) 

hold on 

plot(x,y1, 'Marker', 'x', 'MarkerSize', 12) 

plot(x,y2, 'Marker', '*', 'MarkerSize', 12) 

plot(x,y3, 'Marker', 'o', 'MarkerSize', 12)  

plot(x,y4, 'Marker', '+', 'MarkerSize', 12)   
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• 'MarkerEdgeColor' and 'MarkerFaceColor' are used to give markers a different color 

than the plot. The former changes the colour of the markers edge, the latter, it fills it with a 

colour as well. 

x = linspace(0,30); 

y1 = sin(x); 

y2 = 2*sin(x/2); 

y3 = sin(x/3); 

y4 = 0.25*sin(x/4); 

figure("Units","pixels", "Position", [300 300 600 480]) 

hold on 

plot(x,y1, 'Marker', 'x', 'MarkerSize', 4, 'MarkerEdgeColor', '#77AC30') 

plot(x,y2, 'Marker', '*', 'MarkerSize', 4, 'MarkerEdgeColor', '#D95319') 

plot(x,y3, 'Marker', 'o', 'MarkerSize', 4, 'MarkerEdgeColor', '#4DBEEE', 

'MarkerFaceColor', '#4DBEEE')  

plot(x,y4, 'Marker', '+', 'MarkerSize', 4, 'MarkerEdgeColor', '#77AC30')   
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Comet Plot Animation 

Sometimes, during presentations or classes, you might need to animate your drawings. MATLAB 

allows you to animate your plot using many techniques. Here, will only present the simplest one: 

comet animation 

The comet animation traces and plots the function from beginning to end. The following example 

plots the butterfly shape as an animated comet. 

figure 

t = 0:0.01:10; 

x = sin(t).*(exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).^5); 

y = cos(t).*(exp(cos(t)) - 2.*cos(4*t) - (sin(t/12)).^5); 

comet(x, y) 
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3D Plots 

In Engineering applications, we  often need to visualize functions in the form  MATLAB 

offers plenty of functions to plot 3D graphs. You can apply many of the plot options like coloring and 

titles as we used for 2D plots. 

To start, let us plot the function: 

  

Obviously, we need to apply the function on every possible value of the pair , but this is 

impossible because both would extend to from  to . So we need to specify a range for this 

function on the -plane both for the x-axis and the y-axis. Then we need to create all the possible 

pairs within this range. This would have been cumbersome, but MATLAB provides the meshgrid 

command that would do exactly the same thing in one step.  

Let us assume that we want to plot the above function within the range of  in steps of 0.1 for 

the -axis, and within the range  in steps of 0.1 for the -axis, to do so, simply write: 

[x, y] = meshgrid (-3:0.1:3, -2:0.1:2); 

But if we want to draw both the -axis and -axis to extend to the same range and same increment, 

you can use: 

[x, y] = meshgrid (-3:0.1:3); 

All that remains is to write the function and plot it. MATLAB offers the mesh command that draws 3D 

functions. 
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figure 

z = x.*exp(-1*((x-y.^2).^2 + y.^2)); 

mesh(x,y,z) 

grid on 

 

The varying colours illustrate the hills and valleys of the 3D function (local and global minima and 

maxima points) and they change colour moving toward the peaks and lows of the function. 

We can redraw this function by plotting the surface of the 3D function using the surface command: 

figure 

surf(x,y,z); 

grid on 
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You can draw the function by looking at it orthogonally from the -axis, and then you see the 

projection of the values of the function onto the plane: 

figure 

contour(x,y,z); 

grid on 

 

Use the surface command to combine both the surface and contour commands: 
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figure 

surface(x,y,z); 

 

You can also combine the mesh and contour commands in one command: 

figure 

meshc(x,y,z); 

grid on 

 

And finally, you can use the waterfall command to draw a 3D plot that looks like a waterfall: 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 39 of 40 
 

figure 

waterfall(x,y,z); 

grid on 

 

Storing MATLAB Figures 

Using the savefig command, you can easily save your figure in a .fig format that you can open in 

MATLAB and edit using the plot GUI. You can use savefig to save the most recent figure or by 

passing the figure object handle. The gcf object variable holds the most recent figure drawn. 

figure 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

savefig(gcf, 'myImage.fig') 

 

You can save your figure as an image in numerous image formats using the saveas command. You 

can save your plot in .jpg, .png, .bmp, .tif or vector graphics formats such as .pdf and .eps. 

The gcf object variable holds the most recent figure drawn. 

figure 

x1 = linspace(-2*pi,2*pi); 

y1 = sin(x1); 

plot(x1, y1); 

saveas(gcf, 'myImage.jpg') 
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Summary for Creating Professional Plots 

1. Each axis must be labelled with the name of the quantity being plotted and its units!  

2. Each axis should have regularly spaced tick marks at convenient intervals —not too sparse, 

but not too dense—with a spacing that is easy to interpret and interpolate. For example, use 

0.1, 0.2, and so on, rather than 0.13, 0.26, and so on. 

3. If you are plotting more than one curve or data set, label each on its plot or use a legend to 

distinguish them. 

4. If you are preparing multiple plots of a similar type or if the axes‟ labels cannot convey 

enough information, use a title.   

5. If you are plotting measured data, plot each data point with a symbol such as a circle, 

square, or cross (use the same symbol for every point in the same data set). If there are 

many data points, plot them using the dot symbol. 

6. Sometimes data symbols are connected by lines to help the viewer visualize the data, 

especially if there are few data points. However, connecting the data points, especially with a 

solid line, might be interpreted to imply knowledge of what occurs between the data points. 

Thus, you should be careful to prevent such misinterpretation. 

7. If you are plotting points generated by evaluating a function (as opposed to measured data), 

do not use a symbol to plot the points. Instead, be sure to generate many points, and 

connect the points with solid lines. 
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Basic Statistical and Probabilistic Analysis 

MATLAB offers numerous functions and tools for statistical and probabilistic processing of data. In 

this section, we will present the basic functions that MATLAB offers. To start, we will define a vector 

and an array to work with: 

A = [1, 5, 7, 8.5, 8, 3.5 , 1.25, 5, 4, 4, 6, 7.75, 1.4, 10, 10, 9.7]; 

B = [ 4, 5,  5, 7; ... 

     10, 0, 12, 4; ... 

      2, 1,  4, 9; ... 

      5, 6, 10, 7; ... 

     12, 7,  8, 0 ]; 

The min and max commands return the minimum or maximum value in a vector, or the minimum or 

maximum value of each column in a matrix: 
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min(A) 

ans = 1 

max(A) 

ans = 10 

min(B) 

ans = 1×4 

     2     0     4     0 

max(B) 

ans = 1×4 

    12     7    12     9 

We use the average (mean) and median as two different measures of the central tendency (central 

position) for a set of data.  

To compute the average of collected observed data in MATLAB, we use the mean function.  

 mean(A) 

ans = 5.7563 

If the input to the mean function is a matrix, the average is by default computed column-by-column: 

 mean(B) 

ans = 1×4 

    6.6000    3.8000    7.8000    5.4000 

Many times, the median (average) does not necessarily convey the correct picture of the underlying 

data due to data outliers. The fact that the average is susceptible to the influence of outliers is a 

major disadvantage.  Data outliers are the values (observations) that lie an abnormal distance from 

the other values (observations). This could be due to an actual observation, or sometimes a glitch in 

measuring the observation. For example, assume we have a company where the annual wages of 

the 15 employees (security, janitor, cleaning personnel, HR, engineers) and the CEO, CTO, CFO 

are as follows (in thousands of JODs): 

 annual_salary = [3.6, 3.8, 3.4, 6, 6.5, 6.3, 6.2, 7, 7.5, 7.8, 7.2, 8, 8.2, 8, 

8, 40, 36, 36 ]; 

Computing the mean in this case will give us a truly misleading representation! The mean salary will 

be around 11,639 JODs, where in fact almost all employees get much less income. Do not trust the 

average, ever! 
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 mean(annual_salary) 

ans = 11.6389 

Another example for outliers is if we have a class of 20 students taking an exam; eighteen students 

showed up to the exam while two students missed it. The grading system automatically granted 

zeros to these students. Taking the average might give misleading info about the actual performance 

of the students. The two zeros are not related to the actual performance of the absent students, it 

simply means they did not attend. It is up to the data analyst to examine the data before applying 

any statistical processes. Should you for example consider these outliers as abnormal or exclude 

them? Or are they expected albeit rare and thus should be considered in the analysis? 

The median is the value at which half of the data falls below, and the other half falls above. It is less 

affected by outliers and skewed data, and thus; in many cases can provide a better way to 

understand the data. We use the MATLAB function median to compute the median. So, in our case 

for the company employees, the median is 7,350 JODs. 

 median(annual_salary) 

ans = 7.3500 

The median operates on matrices column-wise: 

 median(B) 

ans = 1×4 

     5     5     8     7 

We can get the most frequently occurring value in a set by using the mode command. For example, 

the annual income 8,000 JOD is the most frequent salary in the set annual_salary. 

 mode(annual_salary) 

ans = 8 

As most MATLAB functions, the mode command operates on vectors or matrices in a column-wise 

fashion.  

 mode(A) 

ans = 4 

When there are multiple values occurring equally frequently, mode returns the smallest of those 

values. For example, in matrix B, each value occurs exactly once in each column, so the mode 

function returns the smallest value in each column. 

 mode(B) 

ans = 1×4 

     2     0     4     7 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 4 of 27 
 

Skewed Distributions and the Mean and Median 

When we have lots of data samples, we often divide them into equal ranges, and count how many 

samples occur within this range. Basically, creating a histogram (we will learn how to draw 

histograms later). Understanding a histogram helps us determine which statistical tool is better to 

use given our data set: the mean or median. If we have a distribution that looks like a normal 

(Gaussian) distribution, then we can use either the mean or median to present our data. However, in 

this case, the mean is widely preferred. 

 

However, if the data is skewed towards the right or left, then the values for the median and mean will 

start to vary. In these cases, the median is generally considered to be the best representative of the 

central location of the data. The more skewed the distribution, the greater the difference between the 

median and mean. 
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The next figure shows the actual distribution of the grades of the course CPE101 taken by 204 

students at the University of Jordan (Fall 2020). We can easily observe that the distribution is 

Gaussian (normal) and almost symmetrical.  If the distribution is symmetric, then the mean will in fact 

equal the median and will be around half the full range. In this particular case, we expect that the 

mean and median are extremely close, which is in fact the case: 15.6 and 15.7, respectively.  
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The Standard Deviation and Variance 

The standard deviation ( ) provides a measure of how widely or narrowly the values (observations) 

are away from the mean. It is a measure of the dispersion (spread) of a set of values. We know from 

the statistics course that around 68.2% of the observations must be between , and that 95.4% of 

the values must be between , and 99.6% of the values must be between , and finally 99.8% 

of the values must be between . In our grades example above, the standard deviation of our 

student grades was 5.4, which means that 68.2% of the students have a grade between 10.2 and 

21, and that 95.4% of the students have a grade between 4.8 and 26.4. 

In MATLAB, we use the std command to compute the standard deviation. Similar to the mean and 

median, it operates on vectors and columns of matrices: 

 std(A) 

ans = 3.0986 

 std(B) 

ans = 1×4 

    4.2190    3.1145    3.3466    3.5071 

However, note that the standard deviation provides useful insights when the underlying set is indeed 

normally distributed. If the data is skewed, then the standard deviation provides little to no 

information about the underlying data! For example, lets apply the std command on the 

annual_salary data which gives a  = 11,947 JOD.  

 std(annual_salary) 

ans = 11.9464 

We know that the mean itself (11,639 JOD) was not reliable in this skewed set in the first place, but if 

we momentarily ignore this and attempt to apply what we know of the standard deviation, then we 

can see that 68.2% of the employees will be getting between -308 JOD to 23,586 JOD. Clearly, this 

is wrong (negative salary), and we know that 15/18 = 83.33% of the employees get below 8,200 

JOD. The morale of the story, know when to use these functions and do not just apply them 

universally for all cases! 

We also know from statistics courses that the variance is the square of the standard deviation ( ). 

Similar to the standard deviation, it measures the spread of the data from their mean. In MATLAB, 

the command var works on vectors or matrices column-wise: 

var(A) 

ans = 9.6016 

var(B) 

ans = 1×4 

   17.8000    9.7000   11.2000   12.3000 
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Kurtosis defines how the tails of a distribution differ from the tails of a normal distribution. Kurtosis 

identifies whether the tails of a given distribution contain extreme values, and determines the 

heaviness of the tails! The kurtosis of a Gaussian (normal) distribution is 3. The excess kurtosis is 

defined as: 

 

There are three types of tail heaviness: 

1. Mesokurtic: If the excess kurtosis is equal or very close to zero, this means that the data 

follows a normal distribution. 

2. Leptokurtic: If the excess kurtosis is positive, this means the distribution tails are heavy on 

either side. This usually means there are large data outliers (extreme positive or negative 

events). The larger the value means that there are heavier tails and more extreme values 

3. Platykurtic: If the excess kurtosis is negative, this means the distribution tails are lighter on 

either side. This usually means there are small data outliers (fewer extreme positive or 

negative events).  

 

 

MATLAB has the command kurtosis that you need to extract three from it to get the excess 

kurtosis value.  

 

kurtosis(A) 

    ans = 1.7900 

Analysing Skewed Data 

Skewness is a measure of the asymmetry of the distribution of a real-valued data (observations) 

about their mean. It gives an idea where the peak is located. 

1. If the distribution of the dataset is symmetric and Gaussian, then the mean equals the 

median and also equals the mode. The two tails of the distribution are equal. In this case the 

skewness is zero.  

2. If the distribution of the dataset leans towards the right, then in this case the mode > median 

> mean, and the skewness is negative indicating that the majority of the values fall to the 

right and that the distribution tail is to the left. 
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3. If the distribution of the dataset leans towards the left, then in this case the mean > median > 

mode, and the skewness is positive indicating that the majority of the values fall to the left 

and that the distribution tail is to the right. 

 

In MATLAB, we use the command skewness to understand the underlying distribution. Let's try this: 

 skewness(annual_salary) 

ans = 1.7410 

The positive result indicates that the majority of the data leans to the right, and only few data points 

(the tail) fall to the right. This is indeed true, for the majority of salaries are well below 8,000 JOD, 

and the three salaries of the CEO, CTO, and CFO are towards the right!  

To better understand what skewness means given the magnitude of its value, we can interpret it as 

[1]: 

• If skewness is less than −1 or greater than +1, the distribution is highly skewed. 

• If skewness is between −1 and −½ or between +½ and +1, the distribution is moderately 

skewed. 

• If skewness is between −½ and +½, the distribution is approximately symmetric. 

In statistics, a quartile divides the number of data points into four parts, or four quarters, of more-or-

less equal size. Basically, it finds the data points which divides the distribution of data into three 

points, where 25%, 50%, and 75% of the data are below this point. These points are usually referred 

to as   This metric can be used with both normally distributed and skewed datasets. The 

median and  are the same since both cut the data into two halves. The quartile points are not 

necessarily evenly spaced; for example, more data points can be concentrated in the second and 

third quarters than the first or fourth quarters. Along with the minimum and maximum of the data, the 

quartile points provide what is called in statistics the five-number summary. 
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In MATLAB, the prctile command (percentile) calculates the points for  by passing the 

25th, 50th, and 75th percentages: 

 prctile(annual_salary, [25, 50, 75]) 

ans = 1×3 

    6.2000    7.3500    8.0000 

In fact, the percentile function prctile is generic. We can use it to get the point at which 42% of the 

data fall below: 

 prctile(annual_salary, 42) 

ans = 7.0120 

The distance between the third quartile  and the first quartile  is called the interquartile range 

(IQR). MATLAB has the command iqr to calculate this range: 

iqr(A) 

ans = 4.5000 

iqr(B) 

ans = 1×4 

    7.0000    5.5000    5.7500    4.5000 

iqr(annual_salary) 

ans = 1.8000 
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Understanding and Plotting Boxplots 

A boxplot is a standardized way of displaying the distribution of data based on the five-number 

summary (“minimum”, first quartile (Q1), median, third quartile (Q3), and “maximum”). An example 

boxplot is shown below: 

 

The box illustrates the IQR (the data distribution between  and ). The line in the middle of the 

box corresponds to the median or the  point. Here the "minimum" and "maximum" do not 

necessarily mean the true or actual  minimum or maximum. In fact, these two values are sometimes 

referred to as whiskers. They are computed as: 

• From above the upper quartile, a distance of 1.5 times the IQR is measured out and a 

whisker is drawn up to the largest observed point from the dataset that falls within this 

distance. 

• Similarly, a distance of 1.5 times the IQR is measured out below the lower quartile and a 

whisker is drawn up to the lower observed point from the dataset that falls within this 

distance. 

All values that occur outside this range are considered outliers, or abnormal! 

Boxplots visualise the underlying data and help us infer some useful information. For example, the 

shape of the inner box tells us if the distribution is symmetric or skewed: 
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To generate the boxplot in MATLAB simply use the boxplot command: 

boxplot(A) 

 

You can draw multiple boxplots for a matrix at once, one for each column: 

boxplot(B) 
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The Moving Average 

The moving average is an extremely powerful tool that extends beyond statistics. For example, it is 

used to design a special type of filters called MAF (moving average filter) that is widely used in 

control and embedded systems. The basic principles are the same whether we use the moving 

average in filtering sensory data or smoothing our data. Probably you have seen during the COVID-

19 crisis lots of graphs that visualize the number of infected people on a daily basis. Daily numbers 

fluctuate and do not easily convey trends of what is going on. Many times, you would see figures 

showing a 3-Day average, or a 7-Day average of infections. Each day, the average is computed over 

the last three or seven days, so the average keeps moving with the data. The oldest day data is 

dropped and the new day data is used instead. The graph below shows the number of daily 

infections as well as the smoothed 3-Day and 7-Day average for the UK: 

 

MATLAB offers the command movsum which takes the data and the window length we want to use to 

sum all the data in.  

movsum(A, 3) 

ans = 1×16 

    6.0000   13.0000   20.5000   23.5000   20.0000   12.7500    9.7500 ⋯ 

In the above example, MATLAB sums the first three values, then it sums the 2nd, 3rd and 4th 

values, then it sums the 3rd, 4th, and 5th values and so on moving in a window of size three. If you 

want to calculate the moving average, simply divide the results by the window length. 
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movsum(A, 3) / 3 

ans = 1×16 

    2.0000    4.3333    6.8333    7.8333    6.6667    4.2500    3.2500 ⋯ 

movsum(A, 7) / 7 

ans = 1×16 

    3.0714    4.2143    4.7143    4.8929    5.4643    5.3214    4.8929 ⋯ 

Drawing Histograms 

If you have collected a set of data values (student grades, company salaries, sensor values related 

to processor internal temperature over time), you need to visualize this data to better understand it 

and make good use of it. A histogram is a display of statistical information that uses rectangles to 

show the frequency of data items in successive numerical intervals of equal size. Histograms are 

useful in studying data properties and distributions as they can be used to approximate the 

probability function. 

Suppose a class of 35 students have the grades: 

grades = [18, 16, 16, 17, 20, 22, 15, 15, 24, 14, 13, 12, 11, 11, 10, 24, 8, 4, 

4, 5, 17, 22, 7 , 16, 17, 17, 25, 7 , 13, 12, 13, 11, 26, 29, 6]; 

To create a histogram of this data in MATLAB, use the hist command. By default, MATLAB creates 

a histogram with 10 bars distributed evenly between the maximum and minimum values. In this 

case, the range for the histogram is [4, 29] and the width of each bin is ((29-4) / 10) = 2.5. Therefore, 

each bar is centered  at 4 + 1.25 = 5.25 (inital point) and then each successive bar center is 2.5 

apart from the others. 

hist(grades) 
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We can manually specify the number and centre of each bar in the histogram by passing the centres 

to the hist command: 

hist(grades, [2:2:30]) 

 

In the previous example, we created 15 bins cantered at 2, 4, 6, ... 30. 

If we want to get the frequency count and the location of each bin centre, we simply have to save 

them as: 

[count, centers] = hist(grades, [2:2:30]) 

count = 1×15 

     0     3     3     1     4     5     3     7     1     1     2     3     

1 ⋯ 
centers = 1×15 

     2     4     6     8    10    12    14    16    18    20    22    24    

26 ⋯ 

So, count basically tells us how many elements are in each bar; the frequency of elements occurring 

within the plotted bar range. 

If instead you already have the frequency of the data instead of the actual data, you can plot a 

histogram using the bar plot. Suppose we have the following grade distribution for a certain course: 
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To plot the data as a histogram, we can do the following: 

y = [10, 12, 13, 15, 18, 19, 14, 10, 6, 1, 0] 

y = 1×11 

    10    12    13    15    18    19    14    10     6     1     0 

x = [47:5:97] 

x = 1×11 

    47    52    57    62    67    72    77    82    87    92    97 

bar(x,y) 
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Random Number Generation (RNG) 

In many engineering and scientific experiments, we need to generate random data to work with. 

MATLAB provides several functions to generate random data according to different specifications. 

Uniformly Distributed Numbers  

The rand command generates random numbers in the interval (0,1) from a uniform distribution. That 

is, each number has an equal chance of showing up in the sequence like the other.  

x = rand 

x = 0.0975 

To generate a square array of uniformly distributed random numbers, use rand(n): 

x = rand(3) 

x = 3×3 

    0.2785    0.9649    0.9572 

    0.5469    0.1576    0.4854 

    0.9575    0.9706    0.8003 

To generate an array of uniformly distributed random numbers of any size , use rand(m, n): 

x = rand(2, 4) 

x = 2×4 

    0.1419    0.9157    0.9595    0.0357 

    0.4218    0.7922    0.6557    0.8491 

If you close MATLAB, and run the above commands again, you will notice that you will get the same 

numbers over and over. This is because MATLAB uses the same seed to its random number 

generator algorithms. In some cases, this might be useful if you are still debugging or developing 

codes, but most of the time, you need truly random numbers to appear each time your codes run. 

You must instruct MATLAB to change its random number generator algorithm seed and make it rely 

on a new value each time. To do so, at the beginning of your programs, use the command: 

rng('shuffle') 

If you want to fix the seed and start over with the same sequence over and over, use a fixed number: 

rng(0) 

To understand what a uniformly distributed number means, lets try to visualize the generated 

random numbers. We will create 100, 10000, and 10,000 uniformly random numbers and plot them 

using a histogram plot: 
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hist(rand(1, 100)) 

 

hist(rand(1, 1000)) 
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hist(rand(1, 10000)) 

 

You will notice that more-or-less, the same number of values appear in each range. The more data 

we generate and plot, the closer the frequencies are each to each other and the more uniform the 

plot looks. 

Uniformly Distributed Pseudorandom Integers 

The function randi(n) returns a pseudorandom scalar integer between 1 and n. 

x = randi(50) 

x = 38 

To generate a square array of uniformly distributed pseudorandom integers between 1 and n, use 

randi(n, a) where a is the size of the square array: 

x = randi(50, 3) 

x = 3×3 

    41    43    43 

    17    30    35 

    29    26     6 

To generate an array of uniformly distributed pseudorandom numbers between 1 and n of size 

, use randi(n, a, b): 
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x = randi(50, 2, 4) 

x = 2×4 

    26    23     3    10 

     1    46    48    19 

if you want to change the interval such that it starts from a different value than 1, then simply specify 

the interval as: 

x = randi([-10, 10], 2, 4) 

x = 2×4 

    -6    -1    -8    -5 

    -8    -5     0    -3 

Normally (Gaussian) Distributed Random Numbers 

The randn command generates random numbers in the interval (0,1) from a Gaussian distribution. 

That is, the probability of each number showing up in the sequence follows a normal distribution 

probability: 

x = randn 

x = 0.1242 

To generate a square array of normally distributed random numbers, use randn(n): 

x = randn(3) 

x = 3×3 

    0.1644   -0.3978   -1.3075 

   -0.3501   -0.2564   -1.1253 

   -0.2853   -0.9355    0.5279 

To generate an array of normally distributed random numbers of any size , use randn(m, n): 

x = randn(2, 4) 

x = 2×4 

    0.0054    1.1800   -1.0567   -0.2111 

    0.8999   -0.7637   -1.8606    0.6913 

To understand what a normally (Gaussian) distributed number means, lets try to visualize the 

generated random numbers. We will create 100, 10000, and 10,000 normally distributed random 

numbers and plot them using a histogram plot: 
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hist(randn(1, 100), [-5:0.1:5]) 

 

hist(randn(1, 1000), [-5:0.1:5]) 
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hist(randn(1, 10000), [-5:0.1:5]) 

 

Random Permutations of Integers 

The function randperm(n) returns a row vector containing a random permutation of the integers 

from 1 to n without repeating elements. So, in order to create 10 random permutations of the 

numbers 1 to 6 containing all the numbers from 1 to 6 once each: 

for i = 1:10 

    randperm(6) 

end 

ans = 1×6 

     3     2     4     6     5     1 

ans = 1×6 

     5     4     2     6     1     3 

ans = 1×6 

     1     5     4     3     6     2 

ans = 1×6 

     4     3     1     5     2     6 

ans = 1×6 

     5     1     4     3     2     6 

ans = 1×6 

     6     4     3     1     2     5 

ans = 1×6 

     1     2     6     5     3     4 

ans = 1×6 

     3     2     6     5     4     1 

ans = 1×6 

     6     3     5     1     4     2 

ans = 1×6 

     2     1     3     4     5     6 
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The function randperm(n, k) returns a row vector containing k unique integers selected randomly 

from 1 to n. So, in order to create 10 random permutations of the numbers 1 to 6 containing numbers 

from 1 to 6 with each vector having a size of 4: 

for i = 1:10 

    randperm(6, 4) 

end 

ans = 1×4 

     1     6     4     5 

ans = 1×4 

     4     2     1     3 

ans = 1×4 

     4     3     2     5 

ans = 1×4 

     2     3     6     5 

ans = 1×4 

     4     1     5     6 

ans = 1×4 

     5     3     4     6 

ans = 1×4 

     4     1     3     2 

ans = 1×4 

     2     1     3     5 

ans = 1×4 

     3     1     6     2 

ans = 1×4 

     1     3     4     6 

Probability 

In any experiment or phenomena, the probability of an event is a number between 0 and 1 that 

indicates the likelihood of that event to occur if the experiment is repeated infinitely. For example, if 

we roll the dice an infinite number of times, theoretically, each side has an equal chance of showing 

up which is 1/6. However, if we repeat rolling the dice hundreds or thousands of times, record the 

data, and draw a histogram, the values will be close to 1/6 but not necessarily 1/6.  
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In the course Probability and Random Variables, you have learnt that a random variable is the term 

used to express the outcome of an experiment, so in the rolling dice experiment, the random 

variable X denoting the outcome will take any of the values 1, 2, 3, 4, 5, 6. In this experiment, the 

random variable X is discrete. Some other experiments have random variables which can take on 

continuous range. 

Random variables are usually associated with functions or distributions to characterize the 

experiment they come from. For example, in the rolling dice example, since the probability of each 

one of the six numbers showing up is equal, then the random variable X can be characterized by a 

uniform distribution.  

Depending on the experiment, the outputs, and their frequencies, the distributions or functions used 

to characterise the variables differ. These functions are called probability density functions (pdf).  

Probability Density Functions (PDF) 

Suppose we have collected the height of 10,000 Jordanian women over the age of 18 and the 

results were as shown in the table below: 

 

In terms of probability, we can use this table to calculate the probability that a Jordanian woman is 

shorter than 144cm as 100/10,000 = 1%, while the probability of a Jordanian woman to be between 

155 to 159 cm is 2400 / 10,000 = 24%. Remember that the sum of all probabilities must equal 1, 

because the area under the pdf curve must be equal to 1.  

We can visualize this data and create a pdf function describing the probabilities as follows: 

h = [100, 900, 3200, 2400, 1800, 900, 600, 100] 

h = 1×8 

         100         900        3200        2400        1800         900 ⋯ 

To generate the probabilities, we simply divide the data by the total samples and multiply by 100%: 
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h_pdf = (h / 10000) * 100 

h_pdf = 1×8 

     1     9    32    24    18     9     6     1 

If we plot the resulting data, we will have the probability density function from which we can readily 

compute the probability of any Jordanian woman being of a certain height, Notice that a pdf is a 

normalized histogram; that is; a histogram whose data is divided by the total number of samples. 

figure("Units","pixels", "Position", [300 300 800 400]) 

x = 1:8; 

bar (x, h_pdf) 

grid on 

xticklabels({'<144', '145-149', '150-154', '155-159', '160-164', '165-169', 

'170-174', '>=175'}) 

xlabel("Height of Jordanian Women (cm)") 

ylabel("Probability") 

 

Cumulative Density Functions 

What if we want to know the probability of a Jordanian woman being of height equal or less than 159 

cm?  

This means we have to add the probability that she might be less than 144cm, or between 145 - 149, 

or between 150 - 154, or between 155 - 15; that is  0.01 +  0.09 +  0.32 +  0.24 = 0.66 (66%). 

But is there an easier way? We can compute the probability of a woman being of less than or equal 

a certain height by using the cumulative density function (cdf). Remember that in cdf, each 

probability is added to the cumulative sum before it. In MATLAB, we have the function cumsum 

which we can use to generate a cdf from a pdf: 

h_cdf = cumsum(h_pdf) 

h_cdf = 1×8 

     1    10    42    66    84    93    99   100 
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To plot the cdf function, we can do the same thing: 

figure("Units","pixels", "Position", [300 300 800 400]) 

x = 1:8; 

bar (x, h_cdf) 

grid on 

xticklabels({'<144', '145-149', '150-154', '155-159', '160-164', '165-169', 

'170-174', '>=175'}) 

xlabel("Height of Jordanian Women (cm)") 

ylabel("Cumulative Probability") 

 

Notice how the cdf function steadily approaches one. Also notice the cumulative probabilities are 

shown on the x-axis. You can easily see that the probability of a Jordanian woman being of height 

less than or equal to 159 is 66%.  

References: 

[1] Bulmer, M. G. 1979.Principles of Statistics. Dover. 
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Solving Linear Equations in Matrix Form 

A linear equation can be represented as a vector made of the coefficients of its terms. A system of 

linear equations can be represented by stacking the vectors of each linear equation on top of each 

other forming a matrix. 

Representing Linear Equations in MATLAB 

A linear equation  can be presented in vector form as 

the coefficients vector . 

So, the function  can be expressed in MATLAB as: 

c1 = [1, -3, 2, -1, 1, 2]; 
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while the function  can be expressed in MATLAB as: 

c2 = [1, 0, 3, 0, -5]; 

Notice that we first reordered the terms to start from the highest order , and the 

coefficients for the missing terms  and  are written as . 

If we know the coefficients of each term, we can evaluate the function  for any  using the 

MATLAB command polyval. The polyval command takes as input the coefficients vector and the 

 at which we want to evaluate . Suppose you want to compute  in the previous 

function. If you already have the coefficients vector, you can simply write: 

y = polyval(c1, 2.5) 

y = 9.9688 

System of Linear Equations 

A system of  linear equations with  variables can be expressed as: 

                                               (1) 

The above system can be expressed in generic matrix form as a matrix holding the coefficients of 

the equations (the left-hand side), a vector of the unknowns , and a vector that holds 

the right hand-side. Notice that we moved all literals  to the right-hand side, so only 

the unknowns remain on the left-hand side before we transformed the equations into matrix form. 

 

In order to understand the notation better, let us write a numeric example. Suppose we have a 

system of three equations and three unknowns  like this: 
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Before expressing the system in matrix form correctly, we need to reorder the terms in all three 

equations so that the variables are aligned. That is, the order of the variables   must be the 

same in all three equations. Also, all literals must be moved to the right-hand part: 

 

We can express it in matrix form as: 

 

Notice that we end up with two numeric matrices, one to the left holding the coefficients, and one to 

the right holding the literals. In MATLAB, we write them as: 

coef = [ 1 -2  3;  ... 

     -1  3 -1; ... 

      2 -5  5]; 

literals = [9;  -6; 17]; 

To find the values of the three unknowns and solve the system, there are two methods; the first is by 

using the inverse (the order is important to satisfy the matrix equations requirements): 

b = inv(coef)*literals 

b = 3×1 

     1 

    -1 

     2 

The other method is simply by using the backward division: 

b = coef\literals 

b = 3×1 

     1 

    -1 

     2 

Linear Regression 

Suppose that we have collected some measurements in the form of 

These measurements could be coming of an engineering application like measuring the speed of a 

car every 10 seconds. By observing the scatter plot of the discrete measurements, we might notice 

that their shape can be approximated by a linear equation. We want to fit a straight line to this set of 

paired measurements. 
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figure 

x = 10:10:60; 

y = [60, 65, 55, 65, 63, 70]; 

scatter(x,y) 

axis ([0 70 40 80]) 

 

We know that the equation of a straight line is: 

  

where  is the slope of the line and  is the x-intercept. Yet, even if we find this straight line that 

fits the data, we know for sure that it will not pass through all the data points; some will fall below the 

line, others above it. Therefore, the straight-line equation will have some errors. 

We can also find multiple straight lines that will fit and approximate the data; we can draw any of the 

four coloured lines and say it approximates the data. So, which one to use? 
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Notice that for the data pairs , we are going to create a line whose 

equation is . So, for every data point , we have its true value  and its 

corresponding value  on the straight line. 

 

The difference between the true value  and its corresponding value on the straight line  is what 

we call the residual error which we express as  (Notice the red lines in the above figure 

which illustrate this error). Ideally, we want to find a line whose values have the least residual error 

(difference) from all corresponding true values. That is, we need to minimize the sum of all absolute 

errors . At the same time, we don't need one or few outlier points to affect the line. For 
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example, we don't want the slightly distant point at (30, 40) to severely shift the straight line 

downwards which we can arguably agree that it beautifully passes through the other points. 

Least-Squares Fit of a Straight Line   

One major algorithm used to fit a straight line to measurements is called the least squares fit or least 

squares errors. The algorithm provides one unique line and given its name, also the least error.  The 

algorithm attempts to minimize the Sum of the Square of the Residual errors (SSR), also called Sum 

of the Squared Estimates of errors (SSE): 

                                (2) 

Analysing Eq.2, the measurements collected provide us with , yet we need to have the 

coefficients which define the line which constitute the two unknowns we need to solve for. We 

need to have two equations to solve for . The derivation starts with differentiating the equation 

twice, once with respect to  and another with respect to : 

                              (3) 

                                       (4) 

We already know that the minimum occurs when the derivative is zero, so we set both 

to zero, then we collect the terms. We end up with a system of two linear equations with two 

unknowns that we can easily solve.  

                                            (5) 

                                                    (6) 

If we take a closer look at Eq. 6, we observe that depends solely on the measurement points; all 

terms in the equation are related to , and the number of observations . Once we have the 

value of , then we can substitute it in Eq. 5 and solve for , thus having the coefficients of the 

straight line that best fits the data. 

Let us apply this equation to our first example where we had measurements of the car speed every 

10 seconds. The points we have are (10, 60), (20, 65), (30, 55), (40, 65), (50, 63), (60, 70) where  

denotes the sample time every 10 seconds, and  denotes its speed in km/h. The best approach to 

solve this by hand is to construct a table of these samples as shown below where we use it to 

compute all the terms in Eq. 6: 
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Solving for : 

 

Therefore, the line which best fits the data is the one with the least SSR (SSE) compared to any 

other line and is represented by: 

 

We call the line resulting from this linear regression method the regression line. 

We shall now plot this line with the scattered measurements on one plot: 

figure 

x = 10:10:60; 

y = [60, 65, 55, 65, 63, 70]; 

scatter(x,y) 

axis ([0 70 0 90]) 

hold on 

xs = 5:0.1:65; 

ys = 0.1543.*xs+57.5995; 

plot(xs,ys) 
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Notice that the slightly far measurement at point (30, 55) did not shift the line towards it as much.  

Quantifying the Goodness of Fit 

What we learnt thus far is that the least squares method gives us the best fit it can given the 

measurements observed. Yet, how can we determine that best fit straight line the algorithm was able 

to provide is actually good enough? We need more criteria to tell us if this fit is good or not!  

In Eq. 2, we defined the sum of the square of the residual errors  

as the square of the error between each measured point and each predicted point on the regression 

line. The problem with this measure is that with more points available, the more errors and SSR 

(SSE) keeps getting larger. However, if we divide this value by the number of points n, then this is 

called mean square error or MSE: 

                                                                   (7) 

There is also another goodness of fit metric called Root Mean Square Error (RMSE) which is simply 

taking the square root of MSE: 

                                                                      (8) 

For all three metrics, SSR (SSE), MSE, or RMSE, the closer the value to zero, means the less the 

errors, and therefore it is a better fit. A perfect fit will have all these value compute to zero. 

We also have another way to quantify the goodness of the fit which is called the correlation 

coefficient, or simply r. It can be computed using the following formula: 

                              (9) 
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From which we can compute the R-Square metric . For a perfect fit, , and the closer the 

values we obtain to one means the better the fit. 

To apply these metrics to the car example, we already found that the regression line equation is 

, if we substitute the values of  that we collected in the regression line 

formula, we will get: 

p = [0.1543, 57.5995]; 

yn = polyval(p, 10:10:60) 

yn = 1×6 

   59.1425   60.6855   62.2285   63.7715   65.3145   66.8575 

Compare these values to the actual measured car speed values: 

disp(y) 

    60    65    55    65    63    70 

To calculate : 

SSR = sum((yn - y).^2) 

SSR = 88.3429 

We calculate the correlation coefficient r: 

n = 6; 

r = (n *sum(x.*y) - sum(x)*sum(y))/ (sqrt(n*sum(x.^2)-

sum(x)^2)*sqrt(n*sum(y.^2)-sum(y)^2)) 

r = 0.5661 

disp(r^2) 

    0.3204 

It is worth to note that to find if the fit has high quality or not, we should not depend on the R-Square 

alone, or the MSE alone, because sometimes R-Square could be close to one, yet MSE is way high 

than zero. So, we should always consider both metrics.  

MATLAB Built-in Functions for Regression 

In this course, we only introduce linear regression. That is how to best fit linear lines. There are 

many numerical methods which attempt to fit non-linear lines (e.g., quadratic, cubic, log, ln, etc.). 

MATLAB offers the command polyfit. This command can actually fit higher degree polynomials 

and not only linear regression. It is internally built on the concept of least square errors. 

To fit and plot a linear regression line in our previous example, we can use: 
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x = 10:10:60; 

y = [60, 65, 55, 65, 63, 70]; 

p = polyfit(x, y, 1)   % The 1 here denotes we need to fit a line (linear  

                          regression) 

p = 1×2 

    0.1543   57.6000 

Notice how the result almost matches our previous results.  

We can plot the measurements and linear regression lines using polyfit and polyval as follows: 

figure 

x = 10:10:60; 

y = [60, 65, 55, 65, 63, 70]; 

scatter(x,y) 

axis ([0 70 0 90]) 

hold on 

p = polyfit(x, y, 1)  

p = 1×2 

    0.1543   57.6000 

xs = 5:0.1:65; 

ys = polyval(p, xs); 

plot(xs, ys) 

 

Curve Fitting 

In the previous section, we learnt to use linear regression to find the equation of the linear line that 

fits the data with the least error possible. However, this technique only works when the data plot 

resembles a linear plot. What if the points are similar to a quadratic equation? an exponential 

equation? That is, they are non-linear. For sure linear regression will fail. There are many numerical 
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techniques for non-linear regression but in this section, we will use MATLAB's curve fitting toolbox to 

find the equation that best fits the data points we have instead of doing numerical methods.  

In MATLAB, go to the Apps tab, and under Maths, Statistics, and Optimization you will find a 

toolbox called Curve Fitting. Open this toolbox by clicking on it. 

 

 

The tool is very simple to use. First, we need to select the data points for the x-axis, the y-axis (or 

the z-axis if the plot is 3D). Make sure that the length of the data points for all axes is equal.  

Let us use the previous data set of the car example: 

x = 10:10:60;                 % original measurments 

y = [60, 65, 55, 65, 63, 70]; 

Then, from curve fitter window, click on Select Data, and from the new window, select the variable x 

for the X Data, and the variable Y for the Y Data, then close the window. You can also give your fit a 

name, say exampleFit1 



Copyright © (2020) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 12 of 24 
 

 

Notice that by default, the polynomial option was selected, and that the polynomial degree was set to 

1, that is a linear line. So, the toolbox starts with linear regression. 

 

 

 

 

 

Notice the results and the goodness of fits measures: 
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In this toolbox, p1 and p2 are the same as a1 and a0 that we calculated numerically. Also, notice the 

values for SSE, RMSE, and R-square.  

Now, let us try a set of non-linear points, for example the x and y pairs in the matrix Data: 

Data = ... 

  [0.0000    5.8955 

   0.1000    3.5639 

   0.2000    2.5173 

   0.3000    1.9790 

   0.4000    1.8990 

   0.5000    1.3938 

   0.6000    1.1359 

   0.7000    1.0096 

   0.8000    1.0343 

   0.9000    0.8435 

   1.0000    0.6856 

   1.1000    0.6100 

   1.2000    0.5392 

   1.3000    0.3946 

   1.4000    0.3903 
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   1.5000    0.5474 

   1.6000    0.3459 

   1.7000    0.1370 

   1.8000    0.2211 

   1.9000    0.1704 

   2.0000    0.2636]; 

 

x = Data(:,1); 

y = Data(:,2); 

Load the x and y values into the Curve Fitting Select Data Window. It is clear that Linear 

Regression does not fit the data well. This is obvious given that the RMSE is much higher than zero 

and R-Square is not close to 1. 
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If you click on the Residual Plot button, it will plot the difference between each actual point  and 

the corresponding point on the line : 

 

Notice how the residual errors are quite large for a bad fit.  
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Let us try to use a quadratic fit using polynomial of degree 2. Even though R-Square has increased 

from 0.6443 to 0.8637, and the RMSE decreased from 0.8458 to 0.5379. It is clear we can do better.  
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What if we try to use a cubic equation by using a polynomial of degree 3?  
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Let us change our equations from polynomials to exponentials, and try to change the number of 

exponential terms from 1 to 2: 

When we have one exponential term, we don't have much change in terms of goodness of fit 

compared to the cubic equation: 
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However, if we use two exponential terms, notice how beautifully the curve fits the data. Also notice 

that R-Square is 0.9961 and very close to 1, while RMSE is 0.09322 and much closer to zero than 

before.  

 

Of course, we can even tune the fit for better results by enabling the advanced options and selecting 

more parameters like certain algorithms among others. But this is out of scope of this lab course. 

Now, in the previous fit, notice that the results returned four parameters  and . Also note that 

the equation is given as a*exp(b*x) + c*exp(d*x), so we can write this in MATLAB: 

f = @(x) 3.007*exp(-10.59*x)+ 2.889*exp(-1.4*x) 

f = function_handle with value: 

    @(x)3.007*exp(-10.59*x)+2.889*exp(-1.4*x) 

 

and we can find any value on this curve by simply calling the function, for example, to find , 

write: 

f(1.75) 

ans = 0.2493 
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Interpolation 

In engineering and scientific applications, we collect measurements from sensors or other 

experiments. These measurements are discrete in nature; that is, they are sampled at non-

continuous points in time (e.g., every 10 ms, second, day, etc.). Sometimes, we might have an 

erroneous measurement (possibly due to high noise) or a missing measurement (e.g.sensor failure). 

As such, we want to predict what the original value was and replace the erroneous or missing value. 

At other times, we might be interested in predicting the value for a point of time that we did not take 

a measurement for.  

Suppose we are measuring the speed of a car every ten seconds for the duration of one minuet 

similar to the car example we have seen already. What if we wanted to predict the speed of the car 

at the 55th second? Or the 43rd second? These are values that we did not take a measurement for. 

You could use the regression techniques we just learnt to come up with the regression line 

(polynomial or otherwise) to find a formula for the speed, then apply : 

x = 10:10:60;                 % original measurments 

y = [60, 65, 55, 65, 63, 70]; 

 

p = polyfit(x, y, 1); % finding the regression line 1st-degree polynomial 

ys = polyval(p, 43)   % Evaluate the desired point using this polynomial 

ys = 64.2343 

In the above example, we applied linear regression because we noticed through the scatter plot that 

a straight line better fits the data. 

But what if you had measurements described as this: 

figure 

x2 = 1:1:10; 

y2 = [2, 5, 8, 15, 19, 17, 14, 13, 10, 7]; 

scatter(x2,y2); 

And you want to predict the value at 3.25? In this case, you might want to connect straight lines 

between the points  and , and compute the slope of this line segment, then write the 

equation of the line, then substitute  in the line equation. 

hold on 

plot(x2,y2) 
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Notice that we were not able to use linear regression on the entire points to predict the value 

because the scatter as a whole does not represent a linear function. Instead, we took two adjacent 

points (3, 8) and (4, 15) and connected them with a line and used the line equation to find the value 

at x = 3.5.  

In a similar fashion, MATLAB offers the function interp1 that interpolates data at certain data 

points. To predict the value of 3.5, we need to only pass the entire original measurements, and the 

data point we want to interpolate at: 

interp1(x2, y2, 3.5) 

ans = 11.5000 

You can also interpolate at many points at once by passing a vector of points: 

interp1(x2, y2, [3.5, 6.75, 8.25]) 

ans = 1×3 

   11.5000   14.7500   12.2500 

Let us compare the output of the interp1 function for the car example with the output we got using 

polyfit and polyval: 

interp1(x,y, 43) 

ans = 64.4000 

 

Why are the two values different? That is, the interpolated result using the regression line was 

64.2343 and using interp1 is 64.4. Let us examine the plot to illustrate how they differ. The interp1 

command connects each successive two points with a line and uses the equation of that line piece 
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to find the interpolation. The regression line is a line that approximates all points together and thus 

has a different equation.  

 

figure 

x = 10:10:60;                 % original measurements 

y = [60, 65, 55, 65, 63, 70]; 

scatter (x,y) 

hold on 

p = polyfit(x, y, 1);         % finding the regression line 1st-degree polynomial 

yn = polyval (p, 10:0.1:60); 

plot(10:0.1:60, yn) 

plot (x,y) 

axis ([0 70 50 75]) 

legend('Car speed', 'Regression Line', 'Piece-wise interp1') 

 

 

 
 

In either of the two previous cases, when we examine the previous figure, we can easily see that 

connecting the points using straight line or regression line does not best fit the function or might not 

offer the best interpolated value. We could have used a smoother fit which will capture the actual 

figure more accurately. This will then yield better predictions and interpolations. 

MATLAB provides the command spline which performs cubic-spline interpolation instead of linear 

interpolation. It has the same syntax as interp1 : 
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ys  = spline(x2, y2, 3.5) 

ys = 11.3279 

You can also interpolate at many points at once by passing a vector of points: 

spline(x2, y2, [3.5, 6.75, 8.25]) 

ans = 1×3 

   11.3279   14.5459   12.4709 

To visualize how spline works, we can plot the smoothed curve: 

figure 

x2 = 1:1:10; 

y2 = [2, 5, 8, 15, 19, 17, 14, 13, 10, 7]; 

scatter(x2,y2); 

hold on 

xnew = 1:0.1:10; 

ynew = spline(x2, y2, xnew); 

plot(xnew, ynew) 
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Revision History 

 

Ver. 1.1 

- Corrected the notation of the linear equation and the linear system and made  

   it easier to understand. 

- Replaced the plots and figures of the linear regression section with new ones  

   and simplified the discussion 

 -Removed some of the previous metrics of the goodness of fit and introduced  

   simpler ones. Removed the difficult interpretation of the some of these  

   statistical metrics. 

- Added a new section on the curve fitting toolbox to cover non-linear  

   regression and other algorithms in simple manner. 

- Added a clarification on why interpolation using the regression line and  

   using interp1 function can be different.  

- Removed interp2, interp3, and intern commands.  
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Error Analysis 

In numerical analysis, we learn the basics of how computers solve mathematical problems such as 

finding roots of functions, finding minima and maxima, how they integrate and differentiate functions. 

Numerical analysis is the basis upon which the math and specialized libraries in programming 

languages are implemented. In fact, the MATLAB commands we will introduce are written using 

numerical techniques.  

In math courses, we learn about exact solutions for many problems that yield an exact answer. 

However, numerical analysis is based on approximating solutions to engineering and scientific 

problems. We get very close to the answer but not necessarily the exact answer. Consequently, with 

approximations there are inherent errors, and these errors must be well understood, and if possible 

reduced. In the first part of this lab, we will present the major error analysis concepts. 
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Difference between Accuracy and Precision 

Engineers and scientists often deal with errors related to either calculations or measurements. 

These errors can be characterized with regard to their accuracy and precision. Accuracy refers to 

how closely a computed or measured value agrees with the true value, i.e., the actual value.  

Precision refers to how closely individually computed or measured values agree with each other. 

The following figure illustrates the concepts of accuracy and precision by using a marksman target 

board. Suppose that the true value is the centre of this target board (in red):   

1. In the first case, the collected values are neither precise (they are sparse) nor true (away 

from target).  

2. In the second case, the values are closer to the true target (accurate), yet not in agreement 

with each other (not precise).  

3. In the third case, we can see that the values are precise, as they agree collectively with each 

other, however, they are not necessarily on target. 

4. In the fourth case, we can see that the values are precise, as they agree collectively with 

each other and also very close to the true value.  

 

You can always plot the collected measurements and infer if they are precise and/or accurate. Given 

that most of our measurements are discrete in nature, it would make sense to use a discrete plot 

such as scatter.  

Roundoff Errors 

Numerical roundoff errors arise because digital computers cannot represent floating-point numbers 

accurately. This is due to the standards used to represent floating point numbers (IEEE 754 

standard) and the hardware circuits that implement these standards. This is why in some languages 

we have single-precision type (32-bits: float) or double-precision type (64-bits: double) where 

doubles have a wider range and are more accurate than floats. MATLAB by default uses the double-

precision format. However, even this format can result in roundoff errors, for example: 

1000.43 - 1000 

ans =  

   0.429999999999950 

 
or 
 
0.7642 - 0.7641 

ans =  

     9.999999999998899e-05 
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The previous two error cases are called subtractive cancellation that results when we subtract two 

close numbers. Even though the roundoff error can be negligible, yet its cumulative error can result 

in erroneous results. For example, we know that summing the small number 0.0001 ten thousand 

times will result in the value one: 

 

s = 0; 

for i = 1:10000 

    s = s + 0.0001; 

end 

disp(s) 

   0.999999999999906 

However, we notice that the result is clearly imprecise. This is because the number 0.0001 cannot 

be precisely expressed in binary format. There is no solution to roundoff errors except by a change 

in the design of a new standards and new computer circuits that have more bits to represent 

numbers more precisely.  

Absolute Errors 

In mathematics, if we already know the true value, then we can measure how any other value or 

an approximation of the true value is away from the exact value. Because we know the true value, 

we call this difference/discrepancy the true numerical error. It is also known as the absolute error  

and is given by:  

        (1) 

For example, we know that  has infinite digits: 3.1415926535 ... but we simply approximate it as 

3.14. In this case: 

 

Most of the time we are interested in the true percent error designated as: 

       (2) 

which in our case of  will be: 

         

In numerical analysis, we do not even know the true value to begin with! In fact, the whole purpose 

of numerical methods is to find this value. So how are we going to know if the value that the 

numerical method comes up with is precise and accurate relative to the true answer. We are not 

able to use the absolute error criterion for obvious reasons; thus, we shall introduce a new one 

called relative errors.  

Relative Errors and the Stopping Criterion 
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In numerical methods, we often go through multiple iterations using loops, and in each loop, we get 

a value that gets closer and closer to the true value (the answer).  Basically, using equations that 

describe the problem, we get the first approximation in the first loop iteration; then we use the first 

approximation in the next iteration to get our second approximation, which in turn we use to get a 

third approximation and so on.    

Now, given that we do not know the true value and we cannot calculate the absolute error, we use 

the relative error instead. This is the error between the answers that we get between each two 

successive approximations. It has a similar generic equation like the absolute error. The relative 

error  is calculated as follows: 

    (3) 

Simply put, we measure  between the second and first iterations, then between the third and 

second, then between the fourth and third. But how many iterations are we going to go over? We 

have two ways to stop the loop: 

1. A fixed number of iterations, say we fix the loop to go for 100 or 200 iterations. 

2. Use a stopping criterion 

The stopping criterion uses an error threshold . In each iteration, we check if the computed relative 

error  becomes less than this threshold . If so, we exit the loop and the last answer is our best 

approximated answer; otherwise, we keep going into the next iteration. We use the absolute value of 

 in this check: 

           (4) 

But what is this error threshold ? How do we get it? 

• Either you specify that you need your approximation to be correct to for example within 

0.00001%, or 

• You want the approximation to be correct to at least n significant digits, and we calculate  

accordingly as: 

           (5) 

So, if we want our final approximation to be correct for the first five significant digits, then 

 

Example:  Maclaurin series expansion of e^x and Relative Errors 

To illustrate this concept, we shall use the Maclaurin series expansion of . The value of   can be 

approximated as: 

         (6) 
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Suppose we want to find the value of , we can approximate the answer using the Maclaurin 

series by substituting x by 0.5 and adding the terms together. But how many terms do we need? Two 

terms? Three terms? Nine terms, or a hundred terms? Suppose we do not know that true value of 

 and that we want to stop when we find an answer whose error is less than . 

 

Initially we approximate the value of  by using the first term only, then we approximate it using 

the second term. We calculate the relative error between these two approximations, and we get 

, which is way higher than .  

 

Next, we approximate the value of   using three terms, then we calculate the relative error 

between the third and second approximations and we get , which is higher than . 

We continue in this order until we reach an approximation using six terms. When we calculate the 

relative error between approximations using the six and five terms, we get , which is 

less than , and therefore we can stop the approximation. 

 

It is worth noting that in order to have a precise and accurate result, we need to use infinite terms 

which is not practical. We always stop the computation short at some term when we reach an 

acceptable error margin. Because we stopped at few terms, we say that we truncated the number of 

terms, and in this case, this type of approximation error is called the truncation error.  

In the implementation of any numerical method, the total error results from both roundoff errors 

and/or truncation errors. For most engineering and scientific applications, we must settle for a close 

value of our approximation within an acceptable error threshold. To reduce (but not necessarily 

eliminate) total errors 

Introduction - What is Optimization? 

In engineering, scientific, and economic applications, we normally use terms like highest 

performance, least overhead, most gains, minimum cost, maximum efficiency, highest speed, 

highest growth, etc. Therefore, we are interested in the points at which the measured or collected 

data is higher or lower than neighbouring data. When we plot these points (or functions) we can 

observe from the plot when the minimum or maximum point is located.  

Sometimes, the function has one minimum or one maximum point, and we call these functions 

unimodal. Other functions have shapes like hills and valleys going up and down and can have 
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multiple high points or multiple low points.  We call these functions multimodal, and these points 

local maxima and local minima points. If we are referring to either point, we call them local 

optima. In such cases, we are mostly interested in the best case which we call the global optimum 

which is the point the yields the best solution for the problem understudy (i.e., lowest cost, highest 

bandwidth, etc.). The following figure illustrates an example of local and global optima points for a 

one-dimensional problem ( ). Optimization is merely finding the points at which our function has 

a global maximum or minimum value. 

 

Single Variable Optimization 

Of course, we cannot rely on plots to find the local or global optima and we need a systematic 

mathematical way to do so. From calculus courses, we know that at either the local or global 

optimum points that the slope of the tangent line touching the point is . That is, . 

Intuitively, we need to differentiate the function  and find the roots of , and these roots will 

be the optimum points. However, this still does not tell us if the said point is a maximum or a 

minimum, we only know that it is an optimum. Again, calculus comes to our aid.  By taking the 

second derivative of the function , then substituting the values  which are the roots we 

found in the earlier step, then we can determine if the point is a minimum or a maximum by: 

  then the point is a minimum. 

 then the point is a maximum. 

 

Multi-variable Optimization 
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Optimization can also be done in two or more dimensions. For example, the function  could 

possibly have the shape shown in the following figure. Notice that the function has multiple hills and 

valleys. The peaks and lows of these hills and valleys represent local maxima and minimas, and the 

highest peaks and lowest valleys represent the global maximums and minimums. We have already 

learnt how to use different types of 3D plots to draw such graphical representations.  

 

In this course, we are mainly interested in one-dimensional (single variable) optimization. Yet, we will 

present MATLAB built-in functions for both one- and multi-dimensional optimization. 

The Golden Number 

Mathematicians have been fascinated by many numbers across history; for example: prime 

numbers, , and  (The Golden number). The golden number has been known since the ancient 

Greeks times and the mathematician Euclid of Alexandria (إقليدس) (the father of geometry) devised a 

geometric way to find it. It has aesthetical quality and is associated with natural beauty when 

observed in nature. The Golden number  has the value . This number 

has been found to govern many naturally occurring shapes or patterns in nature as the following 

figure illustrates: 
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Overview of the Golden-Section Numerical Search (A Bracketing Method) 

The Golden-Section search method is a bracketing method. This means it works over an interval 

(bracket) and finds the minimum value within this interval. The Golden-Section search divides the 

function into intervals that contain the minimum point, then starts looking for the minimum point by 

making an assumption (approximation). Based on this approximation, it updates the ends of the 

interval and makes a new assumption. It compares the current approximation with the previous 

approximation and computes the relative error, and we compare it to the stoppage criterion. If the 

relative error is larger than the stoppage criterion, it keeps iterating, once it is smaller, it stops, and 

the last approximation is the final answer for the optimal point.  

Details of the Golden-Section Search Method through an Example 

The golden section method can only determine the minimum points of a function. We start each 

iteration with an interval  inside which we know that we have a minimum. As we said, 

an interval known to have a single minimum (or maximum) is called unimodal. The algorithm starts 

with finding two points inside the interval  and  based on the Golden number  that we have 

already seen. The values of  and  are computed as follows: 

                                               (7) 

                                                                 (8) 

                                                                  (9)  

Suppose we have the function  that we graphically can tell it has a minimum at  

in the range , so for this function , and therefore  and 

. 
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The numerical method proceeds by computing  and 

, and remember that we are looking for the minimum value, so we 

do the following comparisons: 

• If, as in the figure, , then we assume that  is the approximate minimum in 

this iteration, and all values to the left of , from  to  will be ignored because they do 

not contain the minimum. We update the interval such that  becomes the new  for the 

next iteration. 

• If , then we assume  is the approximate minimum in this iteration, and all 

value of  to the right of , from  to  will be ignored. We update the interval such 

that  becomes the new  for the next iteration.   
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The new interval is now  = [-0.472356, 2].  

In the next iteration, the distance  is recomputed based on the new interval  =             

[-0.472356, 2], and we get . Therefore, the values for: 

  

   

The numerical method proceeds by computing  and 

 



Copyright © (2022) Dr. Ashraf Suyyagh – All Rights Reserved 

 

For Internal Use Only at the Department of Computer Engineering – University of Jordan  Page 11 of 16 
 

 

 

If, as in the figure, , then we assume that  is the NEW approximate minimum in 

this iteration, and all values to the left of , from  to  will be ignored because they do not 

contain the minimum. We update the interval such that  becomes the new  for the next 

iteration. 

 

Also, now that we have two iterations, and old approximate and a new approximate, we can 

calculate the relative error. Because we need to compare it to a stoppage criterion in order to know 
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when to exit the loop. We already know the equation for the relative error from a previous section. 

However, mathematicians came up with new relative error formulae for the golden search algorithm: 

             (10) 

or 

             (11) 

where  and  are the ones used in each iteration.  

We compute , based on the second equation and we find that , a huge error, so we 

need to continue with more iterations.  

The new interval is now  = [+0.472356, 2].  

In the next iteration, the distance  is recomputed based on the new interval  = 

[+0.472356, 2], and we get . Therefore, the values for: 

  

   

The numerical method proceeds by computing  and 
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Notice now that , so we assume  is the approximate minimum in this iteration, 

and all value of  to the right of , from  to  will be ignored. We update the interval such 

that  becomes the new  for the next iteration.   

 

We compute  based on the second equation and we find that  , a huge error, so we 

need to continue with more iterations.  

The new interval is now  = [+0.472356, 1.416388].  

The following table summarizes the first 10 iterations of golden search algorithm. The value in bold 

represents the pair  at which the minimum occurs in the iteration. We copy the value of  as 

 to denote that this is the optimal estimate thus far in this iteration. 

 

Notice that the result is slowly approaching the minimum value which is 1.  
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What about the maximum points? 

When we introduced the golden-search bracketing method, we said that this numerical method is 

used to get the minimum value of a function in a certain interval. We can readily use the golden 

search to get the maximum by a simple twist; when we multiply the function by , we simply flip 

the function upsides down, so when we search for the minimum of  (orange line), then we are 

looking for the maximum of  (blue line) as the next figure illustrates: 

 

MATLAB Optimization Built-In Functions 

MATLAB's fminbnd function takes as an input a function for which you want to find the minimum, 

and an interval for that function to search in between. To apply fminbnd on our previous example: 

 

y = @(x)  x.^2 - 2.*x; 

[x_opt, y_x] = fminbnd (y, -2, 2) 

x_opt =  

     1 

y_x =  

    -1 

 

The function fminbnd uses hybrid techniques to find the minimum within an interval. It is mainly 

based on the golden search we described above, and another technique called the parabolic 

interpolation. We can see the iterations MATLAB uses and the numerical method by enabling some 

options: 
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y = @(x)  x.^2 - 2.*x; 

options = optimset('display','iter'); 

[x_opt, y_x]  = fminbnd(y,-2, 2,options) 

  

 Func-count     x          f(x)         Procedure 

    1      -0.472136      1.16718        initial 

    2       0.472136     -0.72136        golden 

    3        1.05573    -0.996894        golden 

    4              1           -1        parabolic 

    5        1.00003           -1        parabolic 

    6       0.999967           -1        parabolic 

  

Optimization terminated: 

 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04  

x_opt =  

     1 

y_x =  

    -1 

 

If you have a multi-dimensional function such as  and you need to find its minimum value 

using MATLAB, then you can use the fminsearch  command. You can specify if you need the 

minimum near a specific point, or within any interval. If you attempt defining your function as follows, 

it will fail. This is because fminsearch passes one variable to the function, whereas it takes two 

variables: 

 
f=@(x,y) 100*(y - x^2)^2 + (1 - x)^2 

[x,fval]=fminsearch(f,[-0.5,0.5]) 

 

To circumvent this issue, we design the function such that it accepts one value, but we pass a vector 

denoting, x, y, z, etc. 

 

fun = @(m)100*(m(2) - m(1)^2)^2 + (1 - m(1))^2;   %m(1) is x, m(2) is y 

x0 = [-1.2,1]; 

x = fminsearch(fun,x0) 

x = 1×2 

   1.000022021783570   1.000042219751772 
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Numerical Methods for Finding Roots 

We are all familiar with the quadratic formula  whose roots can be directly 

computed using the equation: 

 

Remember that the roots are the values of  that make  evaluate to . But what if  is not a 

quadratic formula? How then can we find the roots of ? Crude methods include plotting the 

function and observing where the function intersects with the x-axis. For example, you can estimate 

the roots of this polynomial equation of degree five  by plotting 

the function: 

x = -1:0.01:3.1; 

y = x.^5 -5*x.^4 + 5*x.^3 + 5*x.^2- 6*x - 1; 

plot(x,y) 

grid on 
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And we can observe that this function has five roots. 

Another method involves trial and error by guessing the value of . Both techniques are obviously 

inefficient and inadequate for the requirements of engineering and science practice. The former is 

imprecise, while the latter is time-consuming. Numerical methods represent approximate alternatives 

but employ systematic strategies to close in on the true root. 

The Bracketing Methods 

We have already seen in the previous experiment how we found the minimum value of a unimodal 

function by "bracketing" it inside an interval with a lower and upper bound, and each iteration, we 

modified this interval. In each interval, the interval (bracket) gets shorter and shorter towards the true 

solution. We will do a similar thing to find roots.  

Since we know that the root is the value that makes the function  = 0, then we must find two 

values such that one is positive; and one is negative. This way, we know that the function must cross 

the x-axis in order to change sign, this crossing is a root since crossing the x-axis at a value  

means that . 

The problem we face is how to choose the two values that bracket the root. The figure to the left 

represents the generic cases we might encounter. If we have two values of the same sign, this 

means that we either have no roots in between (Left Figure (a)), or an even number of roots (Left 

Figure -c)). If we have two numbers with opposite signs, this means they might bracket an odd 

number of roots (Left Figure (b) and (d)). 

There are exceptions to the generic rule which we present in the figure to the right. We can have a 

bracket of two values of opposite signs that encompass an even number of roots if some of these 

roots are tangential to the x-axis; that is, the root just touches the x-axis without crossing it (Right 

Figure (a)). We can also have an even number of roots if the function is discontinuous (Right Figure 

(b)) 
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To find the roots, there are two steps: 

• Find the intervals where the function changes sign because we know that inside this interval 

we will have a root. To search for these intervals, we will use the Incremental Search 

method. 

• Find the approximate value of the root inside each interval that we obtained in the previous 

step. For this step, we can use the Bisection method 

Bracketing Method 1: Incremental Search 

The incremental search works on real continuous functions and tries to find an interval where the 

function changes signs. It provides us with the number of roots but not the exact value of the root. It 

starts with dividing the function into  intervals of a certain width (spacing). If it finds that  and 

 have opposite signs, then there must be a root in between. If the distance (spacing) between 

the numbers is too small, the search can be very time consuming. On the other hand, if the distance 

is too great, there is a possibility that closely spaced roots might be missed. The problem is 

compounded by the possible existence of multiple roots.   

Example: When plotting the function , we will observe it has nine roots in 

the interval [3, 6]. Note that there are few roots that are too close to each other that you might 

mistake them for one root; you need to zoom into the function to distinguish between them! 

x = 3:0.01:6; 

y = sin(10*x) + cos(3*x); 

plot(x,y) 

grid on 

 

If we want to write a code that divides the function into 50 brackets and tries to count the number of 

brackets that have roots in between, we can write: 
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x = linspace(3,6,50); 

y = sin(10*x) + cos(3*x); 

numberBrackets = 0;  

xb = []; %xb is null unless sign change detected 

for k = 1:length(x)-1 

    if sign(y(k)) ~= sign(y(k+1)) %check for sign change 

        numberBrackets = numberBrackets + 1; 

        xb(numberBrackets,1) = x(k); 

        xb(numberBrackets,2) = x(k+1); 

    end 

end 

 

if isempty(xb) %display that no brackets were found 

    disp('no brackets found') 

else 

    disp('number of brackets:') %display number of brackets 

    disp(numberBrackets) 

    disp(xb) 

end 

number of brackets: 

     5 

    3.2449    3.3061 

    3.3061    3.3673 

    3.7347    3.7959 

    4.6531    4.7143 

    5.6327    5.6939 

The code returned five brackets that changed sign, implying that we have five roots whereas we 

know that the function has nine roots in the same interval. This error is due to the fact that we have 

used too wide steps (small number of intervals). If we increase the number of intervals to 100 and 

run the code again, we would get nine brackets implying nine roots which is the correct answer. 

Bracketing Method 2: Bisection 

The bisection method is used to find an approximation of a root within an interval. In each iteration, 

the search interval is divided in half. If a function changes sign over an interval, the function value at 

the midpoint is evaluated. The location of the root is then determined as lying within the subinterval 

where the sign change occurs. The subinterval then becomes the interval for the next iteration. The 

process is repeated until the root is known to the required precision. 

Suppose we have the cubic function . If we plot this function over the interval [-1, 

1.5], we will know that it has only one root.  

x = -1:0.01:1.5; 

y = x.^3  + x - 3; 

plot (x, y) 

grid on 
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We will use the bisection method to approximate this root: 

1. The first step is to find  and  such that  and  have opposite signs. Say 0 and 

1.5, for  and .  

2. In the second step, we take the midway point between 0 and 1.5 as our first approximate 

root, which is 0.75 and compute  

3. Given that  is negative, we know that our second approximation of the root is 

between 0.75 and 1.5, so we take the midway point between them ( = 1.125) as our second 

root approximation. We compute  

4. Given that  is negative, we know that our third approximation of the root is between 

1.125 and 1.5, so we take the midway point between them ( = 1.3125) as our third root 

approximation. We compute  

5. Given that  is positive, we know that our fourth approximation of the root is 

between 1.125 and 1.3125, so we take the midway point between them ( = 1.21875) as our 

fourth root approximation. We compute  

So, when do we stop? Which value do we think is a good enough approximation of the root?  Our 

approximations were 0.75, 1.125,  1.3125 and 1.21875. We must compute  between each two 

successive approximations. This will yield 33.33%, 14.29%, 7.69% 

As you can see, the error in approximating the root is decreasing, but it is still a large error. In this 

case, you might need to choose a value for  such that when the approximation error falls below it, 

you will stop and consider the value you stopped at as a good enough approximation. 

Open Methods 

For well-posed problems, the bracketing methods always work but converge slowly (i.e., they 

typically take more iterations to home in on the answer). In contrast, the open methods do not 
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always work (i.e., they can diverge), but when they do they usually converge quicker.  In this section 

we present one of the most widely used open methods for finding roots. 

Newton-Raphson Method 

The Newton-Raphson method starts with an initial random guess . At the point , we draw a 

tangent line that we extend  until it intersects with the x-axis at a new point . This new point is 

regarded as a better approximation of the root. As we repeat this operation, the crossing of the 

tangent lines gets closer and closer to the true root. 

 

However, to convert this into a mathematical formula, we can use the concept of the derivative. We 

know that the first derivative at  is going to be the slope of the tangent line, and we know that the 

slope is computed as  which in our case is: 

 

when we arrange the terms, we get: 

 which is called the Newton-Raphson formula. 

Example: Suppose we want to find the root of , the first step is to find the derivative 

, and start from a random initial guess, say . We substitute the functions in 

the Newton-Raphson formula: 

 

We substitute , which will give us , then we substitute this value again to give us a 

new  and so on. We can then compute  after each successive approximation 
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and we can as well have a stoppage criterion  of our choice. The following table shows the 

successive approximations for this example. Notice how quickly we converged to the root and how 

extremely small the approximation error is. 

 

To solve the above example in code, one can write: 

y = @(x) exp(-1*x) - x; 

yd = @(x) -1*exp(-1*x) - 1; 

x = 0; 

maxit = 50; 

iter = 0; 

es = 0.0005; 

while (1) 

    xold = x; 

    x = x - y(x)/yd(x); 

    iter = iter + 1; 

    if x ~= 0  

        ea = abs((x - xold)/x) * 100; 

    end 

    if ea <= es || iter >= maxit 

        break 

    end 

end 

root = x 

root = 0.5671 

MATLAB Built-in Functions for Finding Roots 

MATLAB is a numerical tool whose built-in functions employ these techniques that you are learning 

in this course. The fzero function is designed to find the real root of a single equation. A simple 

representation of its syntax is 

fzero(function,x0) 

where function is the name of the function being evaluated, and  is the initial guess.  The function 

must be written as an anonymous function. Suppose we want to find the roots for , we 
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know that it has two roots  and , we can use the function fzero to find the closest root to our 

initial guess: 

fzero(@(x) x.^2 - 9, -2) 

ans = -3 

or  

fzero(@(x) x.^2 - 9, 4) 

ans = 3 

Note that this function only returns one root at a time! 

MATLAB Polynomials and the roots/poly Commands 

A polynomial can mathematically be described as 

where  is the order of the polynomial, and the a’s are constant coefficients . For such cases, the 

roots can be real and/or complex. In general, an nth order polynomial will have n roots. 

Suppose we have the function , this polynomial can be 

represented in MATLAB by having a vector of its ordered coefficients from highest order to lowest: 

c1 = [1 -3 2 -1 1 2]  

c1 = 1×6 

     1    -3     2    -1     1     2 

The function  can be represented as: 

c2 = [1 0 -9] 

c2 = 1×3 

     1     0    -9 

Notice that missing terms have a coefficient of , also do not forget the signs of the terms. 

You can use this representation of MATLAB polynomials with the roots command to find the 

polynomial roots; for example: 

roots (c1) 

ans = 5×1 complex 

   2.0000 + 0.0000i 

   1.6180 + 0.0000i 

   0.0000 + 1.0000i 

   0.0000 - 1.0000i 

  -0.6180 + 0.0000i 

returns three real roots and two imaginary roots for , and the command: 
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roots (c2) 

ans = 2×1 

     3 

    -3 

returns the two roots for the function . 

The poly command is the inverse of the roots command; that is, it takes the roots and returns the 

polynomial. For example: 

poly([-3 3]) 

ans = 1×3 

     1     0    -9 

 

Experiment version 1.1 

Original Experiment December 10th, 2020 

Last Updated May 10th, 2022 

Dr. Ashraf Suyyagh - All Rights Reserved 

 

 

Revision History 

 

Ver. 1.1 

Moved the Error Analysis to a previous experiment. 

Clarified that there are two steps involved in finding the root. 

Corrected the polynomial equation notation to be consistent with previous  

   experiments.  
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Differentiation 

Differentiation is one of the most important operations in Calculus. In this section, we will introduce 

three variations of one numerical method that we use to compute the differential of a one-

dimensional function  at a point . These techniques are derived directly from the definition of 

the differential. They are called the forward, backward, and central derivative methods. They are 

considered less accurate than more elaborate techniques such as the Richardson technique or the 

high accuracy differentiation formulas.  

Slope of a function 

The slope of a straight line (linear function) is calculated by using any two points on that line 

and , then calculating the y-difference between these two points over the distance between 

these two points (x-difference): 
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                        (1) 

But what if the function is not linear and we need to calculate the slope of the line tangent to a point 

 on the line? We start by choosing any other random point , then measure the 

slope between these two points. Notice that  is some distance  from ; that is  is . 

But if  is large, then we do not get an accurate result, because the resulting line is not the tangent 

(see leftmost figure). If we choose another point closer to , that is  is small, then we get closer 

to a line that is the tangent line (see middle and right most figures).  

 

The Derivative 

We know from calculus that the derivative of a function  at a point  is derived from the 

definition of the slope. The derivative of  at point  is defined as the slope of the tangent line 

barely touching . As we have just seen, to theoretically compute the derivative of  at , 

we must have  to be as close as possible to zero but not be zero: 

                      (2) 

Numerically, however, it is hard, if not impossible, to have the limit of  approach zero, therefore, 

we contend with the following approximation: 

                                         (3) 

To represent this equation with a true assignment operator, we must acknowledge the fact that there 

is an error due to the step size : 

                           (4) 

The above definition is called the forward difference approximation of the first derivative.  This is 

because we are using a forward point (  is to the right of ) to compute the derivative. Let us 

see how the forward difference approximation of the first derivative works through a numerical 

example: 
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Suppose we have the function , and that we want to compute the 

derivative at . We know from Calculus that , but let us try to approximate it 

numerically: 

Let's start by having  = 0.5, then: 

 and =  0.15 - 0.1 = 0.05, therefore  

If we keep choosing smaller , say , then: 

 and =  0.15 - 0.14 = 0.01, therefore  

and if we try another smaller step where , then: 

 and =  0.15 - 0.148999... = 0.01, therefore  

Notice that in the above example, we were able to compute  because we know the true value of 

the derivative mathematically.   

In reality, we don't know the actual mathematical derivative, and in fact it is what we want the 

computer to do; to find the derivative for us. In this case, we will do what we have already done 

before, we will initially approximate the derivative using a large random , and in each successive 

iteration we make  smaller (i.e. divide it by 1.5, or 2, or 3, etc.). Then compute  between each 

two successive iterations, and if  is less than , we stop.  

Backward and Centered Difference Approximation of the First Derivative 

What if we choose a point to the left of  instead of a one to the right of ? We can redefine the 

derivative approximation as: 

                       (5) 

This way, we apply the formula using  and a previous value, for example: 

 and  =  0.151 - 0.15 = 0.01, therefore  

Both the forward and backward difference approximation methods have a minor drawback; our 

intention is to approximate the derivative at , but since we use a second point either to the left or to 

the right of , then in our approximation of the derivative, it will be for a middle point between  and 

the second point, that is at a point  and not the derivative at . 

To have an approximation of the derivative exactly at , we use a third variation called the centered 

difference approximation. This numerical method uses a value before  and a value after  such 
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that  is centered in between. So  must be the same in either direction. Therefore, we redefine 

the derivative as: 

                       (6) 

 such that                                       (7) 

For example: 

,  =  0.15 - 0.15 = 0.00, therefore  

Notice that we used a larger step size  of 0.1 rather than 0.01, and we managed to get an 

accurate result better than the forward or backward difference approximation with  = 0.01 

because we are having the derivative centered at  from the start. 

 

 

Higher Order Approximations of the First Derivative 

The set of equations that approximate the first derivative that we have seen so far are actually based 

on the Taylor series expansion of the derivative. In fact, they are based on only the first two terms, 

and truncating the rest, so the error can also be thought of as a truncation error. If we include 

more terms, then the error  will become smaller and the results will be more accurate. The 

equations that approximate the differential using more terms are called higher order approximations 

of the first derivative. In this section, we will only list the three variants of the forward, backward and 

centered approximations when use three terms of the Taylor series. You can look up the derivations 

in any numerical methods or Calculus books but they are out of scope of this introductory course. 

Notice that in what we already explained, we only used two points in our previous approximations. 

Here, we are using three to four points in our equations: 

The forward higher order approximation version: 

                                     (8) 
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The backward higher order approximation version:                    

                                        (9) 

The centered higher order approximation version: 

                  (10) 

Derivative of an Entire Function 

So we learnt how to approximate and find the derivative of function  at a certain point . But, 

what if we want to find the derivative of the function  in general. In this case, we generate a 

vector , and we approximate the derivative at every point . Simply put, we call our function in a 

loop over each value . Yet, it is imperative that the values in vector  must be evenly spaced in 

order to have an accurate result. 

Derivatives of Unequally Spaced Empirical Data 

The assumption we have used thus far in finite difference approximations of the first derivative is that 

the sample data points we measure, collect or generate in vector  are evenly spaced.  This might 

not hold true under empirical circumstances. Suppose you are reading values from a sensor, and 

due to the jittering problem, the samples you get are not 100% sampled at exactly the same sample 

rate and that some points are delayed or others are sampled early. Also, suppose that in some 

experiments, you have missing data points. In these cases, you might not have the necessary data 

points to approximate the differential. In these applications, we need to guess the missing data 

through what we call interpolation before using it. We have already covered the interpolation in this 

course.  

Derivatives for Data with Errors 

Not only do we have to contend with uneven data samples that we collect from our experiments, 

sometimes the measurements we collect contain error. Suppose you are having a sensor that 

measures the speed of a moving vehicle (e.g., car, train, airplane, etc.) and then you need to 

differentiate the collected speeds to measure the vehicle acceleration, if the data has errors, these 

will be amplified in the derivative. For example, in the figure below, if the collected measurements of 

the car speeds indeed reflect the speed accurately, then the acceleration will be smooth. However, if 

the sensor is not accurate enough, errors will be introduced in the measurement, and therefore, they 

will be highly visible in the incorrect acceleration derivative. In such situations, we often need to 

account for these errors by attempting to fit a smoother polynomial before calculating the 

acceleration.  
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MATLAB Functions for Differentiation 

MATLAB offers  two built-in functions  diff and gradient to determine the derivatives of data. 

When we pass a one-dimensional vector of length n, the diff function returns a vector of length n - 

1 containing the differences between adjacent elements.  Practically, this function computes the 

nominator of the fraction. The last step to do is to divide the values by the step size . Kindly note 

that with diff we can differentiate an entire function at all points of . 

Suppose we want to differentiate and plot the function  alongside its derivative 

over the range [-2, 2].  

y = @(x) x.^3 + 2.*x - 3;  % Define the function as an anonymous function 

x = [-2:0.01:2];           % Create evenly spaced x points with even spacing 

delta_x = 0.01; 

fx = y(x);                 % calculate the function f(x) 

dx = diff(fx); 

dx = dx / 0.01; 

plot (x, fx, x(1: length(x)-1), dx) 

grid on 

xlabel('x') 

ylabel('f(x) and its derivative') 

legend('f(x)', 'dx/dy') 
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In comparison to the diff command, the gradient command uses central derivatives, thus giving 

the derivative at the point itself. You must pass  to the function directly.  

y = @(x) x.^3 + 2.*x - 3;  % Define the function as an anonymous function 

x = [-2:0.01:2];           % Create evenly spaced x points with even spacing 

delta_x = 0.01; 

fx = y(x);                 % calculate the function f(x) 

dx = gradient(fx, 0.01); 

Integration (Closed Form) 

The closed form integration is defined as the area under the curve  from the points  to  as 

the figure below illustrates. Numerical integration is sometimes referred to as quadrature. This is an 

old name; most modern books use numerical definite integration.  The most famous formulas for 

numerical definite integration are Newton-Cotes formulas. We will explain two of the formulas in this 

section: the Trapezoidal technique and one of Simpson's rules: 
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The Trapezoidal Rule 

The main idea of the trapezoidal rule is to divide the function into multiple trapezoids. Since we know 

the equation that computes the area of a trapezoid, we can apply it, and sum all the areas of the 

trapezoids.  

The first step is to divide the distance between  and  into evenly spaced multiple segments. In 

this simple example, we divided the range into three segments between the four points , , , and 

.The points  and  form a trapezoid. In general, remember that the function 

linspace is useful in this case, or the colon notation (i.e. 2 : 0.1 : 8) in order to generate the points 

. Once we get this vector of x-values, we need to substitute it in the given function . 

 

Then, we can compute the area of any trapezoid using the following equation: 

                                                                                                    (11) 

So initially, we compute the area of the first trapezoid in the first iteration, then the second trapezoid 

in the second iteration, and so forth. The total summation approximates the area under the curve 

.  

Note that the more segments you have (smaller ), the better your approximation gets. 
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Simpson's  Rule 

We have noticed that the trapezoidal rule successively splits the area under the curve  into 

multiple trapezoids. Notice that the trapezoid between  points  and  in the figure above severely 

under approximates the actual area, while the trapezoid formed between  and  overly estimates 

the area. This is because the trapezoid is formed using linear segments, whereas the functions are 

not necessarily linear. One possible approach to mitigate this issue is to use smaller width 

trapezoids (decrease , increase their numbers). However, more trapezoids entail  more 

computations and time! 

Simpson's  rule is based on the idea of instead of connecting the upper segments using a line, it 

uses three points to draw a parabola shape instead. It assumes that parabolas better approximate 

non-linear functions. It uses three values in every interval to find a parabola shape that connects 

between them and therefore better approximate the original function . Note in the figure below 

how the new segments outlined by the red segment are now indeed a better approximation. 
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Now, the area for each segment can be computed as: 

                                                  (12) 

Now suppose we have five segments, it is clear that in each segment we need three points to 

calculate the above equation. therefore, the number of  values we need to generate must be larger 

than the number of segments. Examining the above equation, we can see that we need  

points where  is the number of segments.  

MATLAB Built-In Integration Functions 

MATLAB has a built-in function that evaluates integrals for data based on the trapezoidal rule called 

trapz, the values of  must be sorted in ascending order: 

x = [0 .1 .2 .3 .4 .5 .6 .7 .8]; 

y = 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5; 

trapz(x,y) 

ans =  

   1.594800960000011 

  

MATLAB uses more accurate numerical methods (we did not cover it in this course) to do the 

integration using the integral command. For example, to integrate , one can 

write: 
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y = @(x) exp(-x.^2).*log(x).^2; 

q = integral(y,0,1) 

q =  

   1.933057085069212 

  

The function can also take  as a parameter: 

q = integral(y,0,Inf) 

q =  

   1.947522220295560 

  

For multiple integrals, MATLAB offers the integral2, and integral3 commands (Check them - self 

study) 

 

 

Experiment version 1.1 

Original Experiment December 17th, 2020 

Last Updated May 17th, 2022 

Dr. Ashraf Suyyagh - All Rights Reserved 

 

Version History 

 

1.1 

 - Removed the Optimization Section and made it into its own standalone  

    experiment 

 - Simplified the text language in many paragraphs.  

 - Fixed the mathematical notation to match the figures 

 - Removed the long formulae for the entire integration sum 
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MATLAB Commands List  

You are free to check the MATLAB documentation for any of them during the exam time. Use the 

doc command followed by the command name  

Chapter 5  Chapter 6  Chapter 7  Chapter 8/9 

        

min  poly  fzero  fminbnd  

max  polyval  roots  fminsearch  

mean  inv  poly  diff  

median  polyfit   gradient  

mode  interp1   trapz  

std  interp2   integral  

var  interp3   Integral2  

kurtosis  interpn   Integral3  

skewness  spline     

prctile       

iqr       

boxplot       

movsum        

hist/ histogram        

bar        

rand        

randi        

randn        

rng('shuffle')        

rng(0)        

randperm        

cumsum        

  

Equations and Formulae  
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Newton-Raphson 

formula  

  

  

Golden Section 

Optimization  

  

  

  

  

  

Slope  

  

Derivative  

  

Forward difference order 

approximation  

  

Backward difference order 

approximation  

  

Centred difference order 

approximation  

  

Forward difference higher 

order approximation  

  

Backward difference 

higher order 

approximation  

  

Centred difference higher 

order approximation  

  

The Trapezoidal Rule 

Segment Area  

 

Simpson's 1/3 Rule 

Segment Area 
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Regression - Equations and Formulae  

  
  

  

  

  

  

  
  

  
  

  
  

  

Coefficient of  
Determination   
– Method 1  

  

Coefficient of  
Determination   
– Method 2  
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Exercise 1 - Equivalent MATLAB Expressions (10 Marks + 14 Marks) 

Part 1 - For the given mathematical expressions, write down the equivalent MATLAB expression and the result.  

Expression MATLAB Result 

  

MATLAB Expression: 

 

      Write final answer in degrees  

MATLAB Expression: 

 

  

 

MATLAB Expression: 

Show if the left-hand side of Euler’s Identity* equals the right-hand side:         
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MATLAB Expression: 

 

 

 

MATLAB Expression: 

 

* Euler identity is one of the most beautiful mathematical equations. It has the number 1, the basis of all numbers; the 0, the concept of nothingness; 𝜋 the 

number that defines circles; 𝑒 the number that defines exponential growth and decline; and finally, i, the imaginary square root.  

Part 2 - Suppose that u = 5, v = -4, and w = 7.25. Use MATLAB to evaluate the following expressions.  

Expression MATLAB Expression Answer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The first symbol means angle 
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Exercise 2 - Infinite Square Roots Problem (6 Marks) 

Suppose we have the following infinite square roots equation: 

 

Let us solve for x by hand. 

Step 1: Take the square (x2) for each side, so we get: 

 

Step 2: The new equation has the very same infinite square root term which we know that it equals 4, so: 

 

Step 3: Solve for x, thus x = 12. 

Now use MATLAB to check the answer. Given that this is an infinite square roots problem, you must use a limited 

number of square roots as illustrated in the table, but by doing so, the result will be close to 4 but not 4. Use MATLAB to 

fill the table.  

How many square roots must we use such that the difference between the approximate result and the actual value is 

less than 0.5%? Hint: The error percentage equation is given by: 

 

Approximation 
Approximate 

Result 
Difference Error Percentage (%) 
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Exercise 3 - Approximations of Pi (9 Marks) 

Pi is one of the few numbers that has fascinated humans for thousands of years. Numerous mathematicians have come 

up with approximations for π.  

1. Use MATLAB to find out the result of some of these approximations listed in the following table. 
2. Calculate the percentage error between these approximations and the actual value of π using the percentage error 

difference equation: 
 

 

3. The 3rd and 4th approximations are accurate to the 30th and 18th decimal digits, respectively. That is, they are still not 

exact values of Pi.  Why is your percentage error difference different than expected? 

Hint: Change the output format to see more significant digits. 

No. Approximation Formula 
Approximation Result 

(1 Mark Each) 
Percentage Error Difference  

(0.5 Marks Each) 

1 
 

  

2 
 

  

3 
 

  

4 

 

  

5 
 

  

6 
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Exercise 4 – MATLAB Display Formats (1.5 Marks) 

Suppose that x = 10 and y = 75.75. Show the result of performing the operations when MATLAB display format is set to 
the options given in the table.   

 

      Format Answer 

long  

short e  

long e   

bank  

rat  

+  

 

Exercise 6 – Finding MATLAB functions (1 Mark) 

Use MATLAB function look up capability to find the functions which do the following: 

Functionality Function 

Find the wavelet Fourier transform  

Decode JSON-formatted text  
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Before starting to solve this lab sheet, please load these matrices into MATLAB by clicking on the provided 

labsheet_02.mat file or by inputting them manually (to practice).  If you change these variables by accident, 

simply load the file again to restore the original values. 
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Exercise 1 – Basic Vector Operations (11 Marks) 

Use MATLAB commands to find the output of the following operations. Provide a numeric answer, unless we ask for the 

command instead. 

 Operation Answer 

1 Multiply v3 by v4 and then the result divide by v5 (elementwise) 

 
Numeric Answer 

 
 

2 What is the MATLAB expression (command) to append all vectors v1 through v5 vertically 

 
Command 

 
 

3 Multiply vectors v1 by v5 (normal array multiplication) 

 
Numeric Answer 

 
 

4 Multiply vectors v4 by v2 (normal array multiplication) 

 
 

Numeric Answer 
 
 

5 
Append v1 and v2 together, save them in x. Then append v3 and v4 together, save them 
in y.  
How many elements are there in the vector y * x? 

 
Command 

(Numeric Answer 
for no of elements) 

6 
By only using the colon operator, create a vector z that has the values from 1000 to -1000 
with a spacing of 5 

 
Command 

 
 

7 
Using MATLAB commands only, create a vector with 150 elements between 25 and 625? 
What is the spacing between elements?  

 
Command 

Numeric Answer 
for spacing 

 

8 
Create a logarithmically spaced vector between 1,000,000,000 and 10 such that the 
elements of this vector are multiples of 10 in descending order 

 
Command 

 
 

9 
Write the command that repeats each element in v3, 9 times and shows the result as a 
row vector (horizontally) 

 
       Command 
 

 

10 Write the command that converts v5 to a 2x2 array 

 
Command 

 
 

11 Write the command that shifts v2 twice to the left 

 
Command 
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Exercise 2 – Basic Matrix Operations (19 Marks) 
Use MATLAB commands to find the output of the following operations. Provide a numeric answer, unless we ask for the 

command instead. 

 Operation Answer 

1 

Multiply (element wise) the natural logarithm of the absolute values of v6 by 
the log10 of the square of each element in v7? 

 
Numeric Answer 
 

2 

What is v8*v9 – v6 + transposed v7?  
Numeric Answer 
 

3 
What is the command to multiply the LEFT diagonal of v6 by the LEFT 
diagonal of v7? 

 
 
 

4 
What is the command to retrieve all the negative elements in v10?  

 
 

5 
What is the command to retrieve the indices of all occurrences of -12 in v10?  

 
 

6 
Write the command(s) that count all numbers between 70 and 100 in v10?  

 
 

7 
Write the command to sort the rows of v10 in descending order and save them 
into a new matrix? 

 
 
 

8 
Write the command(s) to extract the RIGHT diagonal of v10?  

 
 

9 
Write the command to change all negative numbers in v6 to 0  

 
 

10 
Write the command to concatenate v6 and v7 vertically, then change the 
shape of the resulting matrix to be 2x9 

 
 
 

11 
Write the command to extract the middle row in v6?  

 

12 
Write the command to extract the middle column in v7?  

 

13 
Write the command(s) to sum all the elements in v10  

 
 

14 
Write the command(s) to replace the elements 

44 −23 −19
48 −32 −12

  in v10 by 

v9 

 

15 
Write the command(s) that multiples all elements in a magic cube of size 3  

 
 

16 
Write the command(s) that show how a magic cube of size 4 actually has all 
its columns and rows sum to the same number 

 
 
 

17 Write the command that rotates v8 by 180  

18 Write the command that flips v8 vertically  

19 Write the command that creates and initializes an 8x8 matrix to zero?  
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Exercise 3 – Fun with Numbers I (7 Marks) 

Starting with only the command ones(2), write the sequence of commands to create the following 

matrix: 

 

 

 
 
 
 
 
 
 

 

Exercise 4 – Fun with Numbers II (4 Marks) 

Starting with only the command eye(4), write the sequence of commands to create the following 

matrix: 

 

 

 



Page 5 of 5 
Ver. 1.0 

Exercise 5 – Multidimensional Matrices (4 Marks) 

Inside the file labsheet_02.mat, the variable v11 has a 3D array of 3 slices, and each slice is 4x4. 

 

 Operation Answer 

1 Extract the elements in the third slice of v11 

 
 
 
 

2 Extract the first column in the first slice of v11 

 
 
 
 

3 Using linear indexing, retrieve the last element in v11 

 
 
 
 

4 How many zero-valued elements are there in v11? 
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Exercise 1 – MATLAB Functions  

You are required to write a MATLAB primary function that accepts as an input two variables. The function arguments 

are: 

• myVec:   a 4-element positive numeric and integer vector whose values are larger than 10 

• myArray: a numeric array with exactly 4 columns, should only contain real integer numbers 

You must use function argument validation to check if myVec and myArray  satisfy the requirements. 

If all requirements are met, then the function asks the user for a third variable myTask to input using the command 

window. The variable myTask will have string values only. 

• If myTask  has the value ‘1’, the code will multiply myVec by myArray rows on an element-by-element basis.  

• If myTask  has the value ‘2’, the code will count how many instances each element in myVec appears in myArr 

• If myTask  has the value ‘3, the code will perform array multiplication between myVec and myArr. You might 

need to transpose myVec in some cases to make sure the multiplication is legal. 

Each one of the above three tasks must be implemented as a subfunction that your primary function calls. 

Finally, the primary function must return the result to the user in the variable result and display to the user the message: 

“This function has been called x times”. It is your responsibility to keep track of x. 
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Exercise 2 – Spring is Here: Love and Flowers  
 
Write a MATLAB script which asks the user to input either one of these two values: ‘1 or ‘2.  

1. If the user inputs ‘1, you must plot the following equation on the x-y coordinate system: 

 

where t has at least 350 values between −𝜋 and 𝜋 

2. If the user inputs ‘2, then the program must plot the following polar equation: 

 

and 𝜃 has 1000 values between 0 and 10. 

Hint: Use plot(x, y) to plot on the Cartesian coordinate system, and polarplot(theta, r) to plot on the polar 

coordinate system. 
 

 

Exercise 3 – Geometric Series  

A geometric series is defined as the sequence 1, 𝑥, 𝑥2, 𝑥3 … 𝑥𝑚 ,in which the powers of 𝑥 range from 0 to ∞.  

If |𝑥|  <  1, then the series will converge to 
1

1−𝑥
. Otherwise, the series will diverge towards ∞ 

a) For 𝑥 = 0.329, compute the value the series will converge to. 

 

 

 

 

b) Define an anonymous function that implements the above geometric sequence. 

Hint: The function will have two arguments, 𝑥 and 𝑛, where 𝑛 is a vector of the powers used. 

 

 

 

 

c) Generate and sum the values for the first 5 elements of the geometric series by calling the anonymous function 

for x = 0.329. Repeat for the first 50 elements, then 100 elements. 
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Exercise 1 – Computer Performance Profiling 

The file ‘profiling.mat’ consists of an array of eight columns. Eight column is a performance log for a computer system 

component recorded over the period of 200 seconds at a rate of 1 second (200 samples). The file contains data for 

these system components in order: 

 

Core0, Core1, Core2, Core3, Memory, HDD0, HDD1, SSD 

 

You are required to write a MATLAB script that loads the file ‘profiling.mat’ and visualizes its data in one figure 

EXACTLY as shown in Figure 1. The specifications to recreate the Figure are as follows: 

 

1. Use tiled formatting with compact spacing in between tiles. 

2. The figure size must be 1024 x 768 pixels and starts 100 pixels from the left bottom corner of the screen. 

3. The main figure and subfigures titles are bold, and in fixed width font. 

4. All figure titles must appear exactly as shown. 

5. The main figure title size is 18, the subfigures title size is 14, the x-axis labels are size 12, and y-axis labels are 

size 10. 

6. The grid must be visible for all graphs. 

7. The x-axis range must show the whole range from 0 to 200, and the y-axis must have the complete range from 

0 to 100. The 0’s must appear on the graph. 

8. For the memory plot, you must also compute the average memory utilization and plot it in dashed line format. 

9. For the disk access plot, you must show a legend for the three disks and let MATLAB choose the default 

coloring for the three plots. 

10. You must save the figure as a ‘.bmp image at the end. 

11. The y-axis label color is (#0072bd), the x-axis label color is (#a2124f), the titles color is (#7E2F8E), and the 

average memory plot color is (#77ac30) 
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Exercise 2 – Basic 3D Plots  

You are required to write a MATLAB script that visualizes its data in one figure EXACTLY as shown below. 

1. Use tiled formatting with normal spacing in between tiles. 

2. The underlying function is: 𝑓(𝑥, 𝑦) = sin⁡(𝑥)cos⁡(𝑦).  

3. You need to plot the figure extending from the range 0 to 10, each axis must have 100 points. 

4. The figure size must be 1200 x 800 pixels 

5. Create a subtitle for each plot 

6. Save the plot as a pdf image 

.  
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Exercise 1 – Task Execution Time Analysis 

In computer systems in general, and especially in real-time, control, and embedded systems, we take care of measuring 

the execution time of system tasks and understanding their behavior. For example, we do not want the execution time of 

a system task to exceed its deadline, so we need to improve and shorten its time, if possible. On one system, the same 

task can have different execution times. There are many reasons for this; if its data is already allocated in the cache, it 

will execute faster, if not, it will be slower trying to fetch the data from the main memory into the cache memory. Yet, the 

most important reason is that tasks have loops and if-statements; depending on the input variables, some loops will 

execute longer or shorter, and some if-statements will execute the if-part, others the else-part. Therefore, we can expect 

varying execution paths and therefore execution times for each task. 

 

Measuring the execution time and other metrics is called task profiling, and the output logs are called traces. The file 

‘taskTraces.mat’ consists of an array of three columns. Each column contains the times (in ms) it took to execute tasks 

𝜏1 , 𝜏2, and 𝜏3 100,000 times. Load the file ‘taskTraces.mat’ into MATLAB and answer the following questions: 

 

No. Question Answer 

1 
What is the minimum and maximum execution times for 
each task? 

 𝜏1 𝜏2 𝜏3 

minimum    

maximum    

2 

a) What is the skewness of the execution time 
distribution of each task?  

 
b) Which task execution times distribution is normally 

distributed?  
 
c) What about the other tasks? Are they lightly, 

moderately, or heavily skewed?  
 
d) Where do you expect the majority of the execution 

times to reside; at the left, center, or right of the 
distribution graph? 

 𝜏1 𝜏2 𝜏3 

skewness    

 Description (a, b, c) 

𝜏1 

 
 
 
 

𝜏2 

 
 
 
 

𝜏3 
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3 
Which command would you use to find the central 
tendency of each execution time distribution? 

 Command Result 

𝜏1   

𝜏2   

𝜏3   

4 

a) Which of the three distributions do you think you can 
compute the standard deviation and variance for and 
have valuable information? 

b) What is the result of the standard deviation or 
variance for this/these distribution? 

 

5 
Classify the three execution times distributions into 

mesokurtic, leptokurtic, platykurtic.  

 Type 

𝜏1  

𝜏2  

𝜏3  

6 

Based on the excess kurtosis value, which one of these 

three distributions have task execution times that are 

more extreme and away from the other time samples? 

 

7 
Compute the three quartile points and the interquartile 
range for each of these three task execution time 
distributions?  

 𝑄1 𝑄2 𝑄3 IQR 

𝜏1     

𝜏2     

𝜏3     

8 

Draw the boxplots for each of the execution times 
distributions on individual plots and copy/paste them in 
their specified location to the right. 

 
Briefly explain what you understand from each plot 
regarding the execution times themselves. 
 

Plot 1 

Explanation: 

Plot 2 
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Explanation: 

Plot 3 

Explanation: 

9 

Draw a proper histogram for each of the three task 
distributions.  
 
The bin width for 𝜏1 must be 10 ms, for 𝜏2 must be 5 ms, 
and for 𝜏3it is 1 ms. 
 
Copy/paste your graphs in the designated space to the 
right 

Plot 1 

Plot 2 
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Plot 3 

10 

What is the probability that the execution time for task 𝜏1 
is less than or equal 500 ms? 
 
What is the probability that the execution time for task 𝜏3 
is more than 8.5 ms? 
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